MC912DG128AMPVE Freescale Semiconductor, MC912DG128AMPVE Datasheet - Page 376

IC MCU 128K FLASH 8MHZ 112-LQFP

MC912DG128AMPVE

Manufacturer Part Number
MC912DG128AMPVE
Description
IC MCU 128K FLASH 8MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HC12r
Datasheet

Specifications of MC912DG128AMPVE

Core Processor
CPU12
Core Size
16-Bit
Speed
8MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
69
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 16x8/10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
112-LQFP
Processor Series
HC912D
Core
HC12
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
CAN/I2C/SCI/SPI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
69
Number Of Timers
8
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Minimum Operating Temperature
- 40 C
On-chip Adc
2 (8-ch x 10-bit)
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC912DG128AMPVE
Manufacturer:
FREESCALE
Quantity:
2 902
Part Number:
MC912DG128AMPVE
Manufacturer:
FREESCALE
Quantity:
800
Part Number:
MC912DG128AMPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128AMPVE
Manufacturer:
FREESCALE
Quantity:
800
Analog-to-Digital Converter
19.8 Application Considerations
19.9 ATD Registers
Technical Data
376
Note that the A/D converter’s accuracy is limited by the accuracy of the
reference potentials. Noise on the reference potentials will result in noise
on the digital output data stream: the reference potential lines do not
reject reference noise.
The reference potential pins must have a low AC impedance path back
to the source. A large bypass capacitor (100nF or larger) will suffice in
most cases. In extreme cases, inductors and/or ferrite beads may be
necessary if high frequency noise is present. Series resistance is not
advisable since the ATD module draws current from the reference. A
potential drop across any series resistance would result in gain and
offset errors in the digital data output stream unless the reference
potential was sensed at the reference input pin and any potential drop
compensated for.
For best performance, the analog inputs should have a low AC
impedance at the input pins to shunt noise current coupled onto the input
node away from the A/D input. This can be accomplished by placing a
capacitor with good high frequency characteristics between the input pin
and V
capacitors will lower the AC impedance and be more effective at
shunting away noise current. However, the input analog signal has its
own dynamic characteristics which the A/D converter is being used to
track. These, along with the source impedance of the signal driver, must
also be considered when choosing the capacitor size to avoid rolling off
any high frequency components of interest.
If the input signal contains excessive high frequency conducted noise,
then a series resistance may be used with the capacitor to generate a
one pole, low pass anti-aliasing filter.
Control and data registers for the ATD modules are described below.
Both ATDs have identical control registers mapped in two blocks of 16
bytes.
Freescale Semiconductor, Inc.
For More Information On This Product,
SSA
.
The size of this capacitor is application dependent; larger
Analog-to-Digital Converter
Go to: www.freescale.com
MC68HC912DT128A — Rev 4.0
MOTOROLA

Related parts for MC912DG128AMPVE