MC908AZ60ACFU Freescale Semiconductor, MC908AZ60ACFU Datasheet - Page 313

no-image

MC908AZ60ACFU

Manufacturer Part Number
MC908AZ60ACFU
Description
IC MCU FLASH 8.4MHZ 60K 64QFP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheet

Specifications of MC908AZ60ACFU

Core Processor
HC08
Core Size
8-Bit
Speed
8.4MHz
Connectivity
CAN, SCI, SPI
Peripherals
LVD, POR, PWM
Number Of I /o
52
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 15x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-QFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC908AZ60ACFU
Manufacturer:
MOTOROLA
Quantity:
84
Part Number:
MC908AZ60ACFU
Manufacturer:
FREESCAL
Quantity:
2 309
Part Number:
MC908AZ60ACFU
Manufacturer:
FREESCALE
Quantity:
400
Part Number:
MC908AZ60ACFU
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC908AZ60ACFU
Manufacturer:
FREESCALE
Quantity:
400
Part Number:
MC908AZ60ACFU
Manufacturer:
MOTOROLA/摩托罗拉
Quantity:
20 000
Part Number:
MC908AZ60ACFU1L87J
Manufacturer:
MOT
Quantity:
143
Part Number:
MC908AZ60ACFU3K85K
Manufacturer:
FUJI
Quantity:
1 078
Part Number:
MC908AZ60ACFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC908AZ60ACFUE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC908AZ60ACFUE
Manufacturer:
FREESCALE
Quantity:
8 908
Part Number:
MC908AZ60ACFUE1L87J
Manufacturer:
TEMIC
Quantity:
350
Part Number:
MC908AZ60ACFUER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
25.3.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as described in
Modulation
pulse width value over the value currently in the TIMA channel registers.
An unsynchronized write to the TIMA channel registers to change a pulse width value could cause
incorrect operation for up to two PWM periods. For example, writing a new value before the counter
reaches the old value but after the counter reaches the new value prevents any compare during that PWM
period. Also, using a TIMA overflow interrupt routine to write a new, smaller pulse width value may cause
the compare to be missed. The TIMA may pass the new value before it is written to the TIMA channel
registers.
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:
25.3.4.2 Buffered PWM Signal Generation
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the
PTE2/TACH0 pin. The TIMA channel registers of the linked pair alternately control the pulse width of the
output.
Setting the MS0B bit in TIMA channel 0 status and control register (TASC0) links channel 0 and
channel 1. The TIMA channel 0 registers initially control the pulse width on the PTE2/TACH0 pin. Writing
to the TIMA channel 1 registers enables the TIMA channel 1 registers to synchronously control the pulse
width at the beginning of the next PWM period. At each subsequent overflow, the TIMA channel registers
(0 or 1) that control the pulse width are the ones written to last. TASC0 controls and monitors the buffered
PWM function and TIMA channel 1 status and control register (TASC1) is unused. While the MS0B bit is
set, the channel 1 pin, PTE3/TACH1, is available as a general-purpose I/O pin.
Channels 2 and 3 can be linked to form a buffered PWM channel whose output appears on the
PTF0/TACH2 pin. The TIMA channel registers of the linked pair alternately control the pulse width of the
output.
Setting the MS2B bit in TIMA channel 2 status and control register (TASC2) links channel 2 and
channel 3. The TIMA channel 2 registers initially control the pulse width on the PTF0/TACH2 pin. Writing
to the TIMA channel 3 registers enables the TIMA channel 3 registers to synchronously control the pulse
width at the beginning of the next PWM period. At each subsequent overflow, the TIMA channel registers
Freescale Semiconductor
When changing to a shorter pulse width, enable channel x output compare interrupts and write the
new value in the output compare interrupt routine. The output compare interrupt occurs at the end
of the current pulse. The interrupt routine has until the end of the PWM period to write the new
value.
When changing to a longer pulse width, enable TIMA overflow interrupts and write the new value
in the TIMA overflow interrupt routine. The TIMA overflow interrupt occurs at the end of the current
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current
pulse) could cause two output compares to occur in the same PWM period.
(PWM). The pulses are unbuffered because changing the pulse width requires writing the new
In PWM signal generation, do not program the PWM channel to toggle on
output compare. Toggling on output compare prevents reliable 0% duty
cycle generation and removes the ability of the channel to self-correct in the
event of software error or noise. Toggling on output compare also can
cause incorrect PWM signal generation when changing the PWM pulse
width to a new, much larger value.
MC68HC908AZ60A • MC68HC908AS60A • MC68HC908AS60E Data Sheet, Rev. 6
NOTE
Functional Description
25.3.4 Pulse Width
313

Related parts for MC908AZ60ACFU