MC9S12E128CPVE Freescale Semiconductor, MC9S12E128CPVE Datasheet - Page 464

IC MCU 128K FLASH 25MHZ 112-LQFP

MC9S12E128CPVE

Manufacturer Part Number
MC9S12E128CPVE
Description
IC MCU 128K FLASH 25MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheets

Specifications of MC9S12E128CPVE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
EBI/EMI, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
91
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 2.75 V
Data Converters
A/D 16x10b; D/A 2x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Processor Series
S12E
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
SCI/SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
92
Number Of Timers
12
Operating Supply Voltage
3.135 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Minimum Operating Temperature
- 40 C
On-chip Adc
16-ch x 10-bit
On-chip Dac
2-ch x 8-bit
Controller Family/series
HCS12/S12X
No. Of I/o's
90
Ram Memory Size
8KB
Cpu Speed
25MHz
No. Of Timers
4
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
For Use With
M68EVB912E128 - BOARD EVAL FOR MC9S12E128/64
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
Part Number:
MC9S12E128CPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
Chapter 15 Background Debug Module (BDMV4)
15.4.7
BDM commands that require CPU execution are ultimately treated at the MCU bus rate. Because the BDM
clock source can be asynchronously related to the bus frequency, when CLKSW = 0, it is very helpful to
provide a handshake protocol in which the host could determine when an issued command is executed by
the CPU. The alternative is to always wait the amount of time equal to the appropriate number of cycles at
the slowest possible rate the clock could be running. This sub-section will describe the hardware
handshake protocol.
The hardware handshake protocol signals to the host controller when an issued command was successfully
executed by the target. This protocol is implemented by a 16 serial clock cycle low pulse followed by a
brief speedup pulse in the BKGD pin. This pulse is generated by the target MCU when a command, issued
by the host, has been successfully executed (see
After the ACK pulse has finished: the host can start the bit retrieval if the last issued command was a read
command, or start a new command if the last command was a write command or a control command
(BACKGROUND, GO, GO_UNTIL, or TRACE1). The ACK pulse is not issued earlier than 32 serial
clock cycles after the BDM command was issued. The end of the BDM command is assumed to be the
16th tick of the last bit. This minimum delay assures enough time for the host to perceive the ACK pulse.
Note also that, there is no upper limit for the delay between the command and the related ACK pulse,
because the command execution depends upon the CPU bus frequency, which in some cases could be very
slow compared to the serial communication rate. This protocol allows a great flexibility for the POD
designers, because it does not rely on any accurate time measurement or short response time to any event
in the serial communication.
464
(TARGET MCU)
ACK
TRANSMITS
BDM CLOCK
BKGD PIN
TARGET
PULSE
16th TICK OF THE
LAST COMMAD BIT
Serial Interface Hardware Handshake Protocol
If the ACK pulse was issued by the target, the host assumes the previous
command was executed. If the CPU enters WAIT or STOP prior to
executing a hardware command, the ACK pulse will not be issued meaning
that the BDM command was not executed. After entering wait or stop mode,
the BDM command is no longer pending.
HIGH-IMPEDANCE
32 CYCLES
Figure 15-10. Target Acknowledge Pulse (ACK)
MC9S12E128 Data Sheet, Rev. 1.07
MINIMUM DELAY
FROM THE BDM COMMAND
Figure
NOTE
16 CYCLES
15-10). This pulse is referred to as the ACK pulse.
SPEEDUP PULSE
EARLIEST
START OF
NEXT BIT
HIGH-IMPEDANCE
Freescale Semiconductor

Related parts for MC9S12E128CPVE