MC9S12E128CPVE Freescale Semiconductor, MC9S12E128CPVE Datasheet - Page 506

IC MCU 128K FLASH 25MHZ 112-LQFP

MC9S12E128CPVE

Manufacturer Part Number
MC9S12E128CPVE
Description
IC MCU 128K FLASH 25MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheets

Specifications of MC9S12E128CPVE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
EBI/EMI, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
91
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 2.75 V
Data Converters
A/D 16x10b; D/A 2x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Processor Series
S12E
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
SCI/SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
92
Number Of Timers
12
Operating Supply Voltage
3.135 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Minimum Operating Temperature
- 40 C
On-chip Adc
16-ch x 10-bit
On-chip Dac
2-ch x 8-bit
Controller Family/series
HCS12/S12X
No. Of I/o's
90
Ram Memory Size
8KB
Cpu Speed
25MHz
No. Of Timers
4
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
For Use With
M68EVB912E128 - BOARD EVAL FOR MC9S12E128/64
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
Part Number:
MC9S12E128CPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
Chapter 17 Interrupt (INTV1)
The interrupt sub-block decodes the priority of all system exception requests and provides the applicable
vector for processing the exception. The INT supports I-bit maskable and X-bit maskable interrupts, a
non-maskable unimplemented opcode trap, a non-maskable software interrupt (SWI) or background debug
mode request, and three system reset vector requests. All interrupt related exception requests are managed
by the interrupt sub-block (INT).
17.1.1
The INT includes these features:
17.1.2
The functionality of the INT sub-block in various modes of operation is discussed in the subsections that
follow.
506
Provides two to 122 I-bit maskable interrupt vectors (0xFF00–0xFFF2)
Provides one X-bit maskable interrupt vector (0xFFF4)
Provides a non-maskable software interrupt (SWI) or background debug mode request vector
(0xFFF6)
Provides a non-maskable unimplemented opcode trap (TRAP) vector (0xFFF8)
Provides three system reset vectors (0xFFFA–0xFFFE) (reset, CMR, and COP)
Determines the appropriate vector and drives it onto the address bus at the appropriate time
Signals the CPU that interrupts are pending
Provides control registers which allow testing of interrupts
Provides additional input signals which prevents requests for servicing I and X interrupts
Wakes the system from stop or wait mode when an appropriate interrupt occurs or whenever XIRQ
is active, even if XIRQ is masked
Provides asynchronous path for all I and X interrupts, (0xFF00–0xFFF4)
(Optional) selects and stores the highest priority I interrupt based on the value written into the
HPRIO register
Normal operation
The INT operates the same in all normal modes of operation.
Special operation
Interrupts may be tested in special modes through the use of the interrupt test registers.
Emulation modes
The INT operates the same in emulation modes as in normal modes.
Low power modes
See
Section 17.4.1, “Low-Power
Features
Modes of Operation
MC9S12E128 Data Sheet, Rev. 1.07
Modes,” for details
Freescale Semiconductor

Related parts for MC9S12E128CPVE