MC56F8345VFGE Freescale Semiconductor, MC56F8345VFGE Datasheet - Page 168

IC DSP 16BIT 60MHZ 128-LQFP

MC56F8345VFGE

Manufacturer Part Number
MC56F8345VFGE
Description
IC DSP 16BIT 60MHZ 128-LQFP
Manufacturer
Freescale Semiconductor
Series
56F8xxxr
Datasheet

Specifications of MC56F8345VFGE

Core Processor
56800
Core Size
16-Bit
Speed
60MHz
Connectivity
CAN, EBI/EMI, SCI, SPI
Peripherals
POR, PWM, Temp Sensor, WDT
Number Of I /o
49
Program Memory Size
136KB (68K x 16)
Program Memory Type
FLASH
Ram Size
6K x 16
Voltage - Supply (vcc/vdd)
2.25 V ~ 3.6 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 105°C
Package / Case
128-LQFP
Data Bus Width
16 bit
Processor Series
MC56F83xx
Core
56800E
Numeric And Arithmetic Format
Fixed-Point
Device Million Instructions Per Second
60 MIPs
Maximum Clock Frequency
60 MHz
Number Of Programmable I/os
49
Data Ram Size
8 KB
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Interface Type
SCI, SPI, CAN
Minimum Operating Temperature
- 40 C
For Use With
MC56F8367EVME - EVAL BOARD FOR MC56F83X
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC56F8345VFGE
Manufacturer:
Freescale Semiconductor
Quantity:
1 985
Part Number:
MC56F8345VFGE
Manufacturer:
MOTOLOLA
Quantity:
245
Part Number:
MC56F8345VFGE
Manufacturer:
FREESCALE
Quantity:
2 946
Part Number:
MC56F8345VFGE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC56F8345VFGE
Manufacturer:
FREESCALE
Quantity:
2 946
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire
is placed flat against the package case to avoid measurement errors caused by cooling effects of the
thermocouple wire.
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the
interface between the case of the package and the interface material. A clearance slot or hole is normally
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the
experimental difficulties with this technique, many engineers measure the heat sink temperature and then
back-calculate the case temperature using a separate measurement of the thermal resistance of the
interface. From this case temperature, the junction temperature is determined from the junction-to-case
thermal resistance.
12.2 Electrical Design Considerations
Use the following list of considerations to assure correct operation of the 56F8345/56F8145:
168
Provide a low-impedance path from the board power supply to each V
board ground to each V
The minimum bypass requirement is to place six 0.01–0.1μF capacitors positioned as close as possible to
the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each
of the V
performance tolerances.
Ensure that capacitor leads and associated printed circuit traces that connect to the chip V
pins are less than 0.5 inch per capacitor lead
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V
Bypass the V
capacitor such as a tantalum capacitor
DD
/V
DD
SS
This device contains protective circuitry to guard
against damage due to high static voltage or electrical
fields. However, normal precautions are advised to
avoid
maximum-rated voltages to this high-impedance circuit.
Reliability of operation is enhanced if unused inputs are
tied to an appropriate voltage level.
pairs, including V
and V
SS
SS
application
layers of the PCB with approximately 100μF, preferably with a high-grade
(GND) pin
56F8345 Technical Data, Rev. 17
DDA
/V
of
SSA.
CAUTION
Ceramic and tantalum capacitors tend to provide better
any
voltages
higher
DD
pin on the device, and from the
than
DD
Freescale Semiconductor
and V
DD
SS
and V
Preliminary
SS
(GND)

Related parts for MC56F8345VFGE