MC9S12XEP100CAL Freescale Semiconductor, MC9S12XEP100CAL Datasheet - Page 494

IC MCU 16BIT 1M FLASH 112-LQFP

MC9S12XEP100CAL

Manufacturer Part Number
MC9S12XEP100CAL
Description
IC MCU 16BIT 1M FLASH 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12XEP100CAL

Core Processor
HCS12X
Core Size
16-Bit
Speed
50MHz
Connectivity
CAN, EBI/EMI, I²C, IrDA, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
91
Program Memory Size
1MB (1M x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Processor Series
S12XE
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
64 KB
Interface Type
CAN/SCI/SPI
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
91
Number Of Timers
25
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
KIT33812ECUEVME, EVB9S12XEP100, DEMO9S12XEP100
Minimum Operating Temperature
- 40 C
On-chip Adc
16-ch x 12-bit
Package
112LQFP
Family Name
HCS12X
Maximum Speed
50 MHz
Operating Supply Voltage
1.8|2.8|5 V
For Use With
EVB9S12XEP100 - BOARD EVAL FOR MC9S12XEP100DEMO9S12XEP100 - BOARD DEMO FOR MC9S12XEP100
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12XEP100CAL
Manufacturer:
TOSHIBA
Quantity:
72
Part Number:
MC9S12XEP100CAL
Manufacturer:
FREESCALE
Quantity:
2 689
Part Number:
MC9S12XEP100CAL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12XEP100CAL
Manufacturer:
FREESCALE
Quantity:
2 689
Chapter 11 S12XE Clocks and Reset Generator (S12XECRGV1)
11.4.3
This section summarizes the low power options available in the S12XECRG.
11.4.3.1
This is the default mode after reset.
The RTI can be stopped by setting the associated rate select bits to zero.
The COP can be stopped by setting the associated rate select bits to zero.
11.4.3.2
The WAI instruction puts the MCU in a low power consumption stand-by mode depending on setting of
the individual bits in the CLKSEL register. All individual Wait Mode configuration bits can be superposed.
This provides enhanced granularity in reducing the level of power consumption during Wait Mode.
Table 11-15
After executing the WAI instruction the core requests the S12XECRG to switch MCU into Wait Mode.
The S12XECRG then checks whether the PLLWAI bit is asserted. Depending on the configuration the
S12XECRG switches the system and core clocks to OSCCLK by clearing the PLLSEL bit and disables
the IPLL.
There are two ways to restart the MCU from Wait Mode:
494
Because of an order from the United States International Trade Commission, BGA-packaged product lines and partnumbers
indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010
1. Any reset
2. Any interrupt
Low Power Options
lists the individual configuration bits and the parts of the MCU that are affected in Wait Mode.
Run Mode
Wait Mode
In order to detect a potential clock loss the CME bit should always be
enabled (CME = 1).
If CME bit is disabled and the MCU is configured to run on PLLCLK, a loss
of external clock (OSCCLK) will not be detected and will cause the system
clock to drift towards lower frequencies. As soon as the external clock is
available again the system clock ramps up to its IPLL target frequency. If
the MCU is running on external clock any loss of clock will cause the
system to go static.
Table 11-15. MCU Configuration During Wait Mode
IPLL
COP
RTI
MC9S12XE-Family Reference Manual , Rev. 1.23
Stopped
PLLWAI
NOTE
Stopped
RTIWAI
Stopped
COPWAI
Freescale Semiconductor

Related parts for MC9S12XEP100CAL