MPC555LFMZP40 Freescale Semiconductor, MPC555LFMZP40 Datasheet - Page 515

IC MCU 32BIT 40MHZ 272-BGA

MPC555LFMZP40

Manufacturer Part Number
MPC555LFMZP40
Description
IC MCU 32BIT 40MHZ 272-BGA
Manufacturer
Freescale Semiconductor
Series
MPC5xxr
Datasheets

Specifications of MPC555LFMZP40

Core Processor
PowerPC
Core Size
32-Bit
Speed
40MHz
Connectivity
CAN, EBI/EMI, SCI, SPI, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
101
Program Memory Size
448KB (448K x 8)
Program Memory Type
FLASH
Ram Size
26K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 2.7 V
Data Converters
A/D 32x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 125°C
Package / Case
272-PBGA
Controller Family/series
POWER 5xx
Ram Memory Size
26KB
Cpu Speed
63MIPS
Embedded Interface Type
QSPI, SCI, TouCAN
Operating Temperature Range
-40°C To +125°C
No. Of Pins
272
Rohs Compliant
No
Processor Series
MPC5xx
Core
PowerPC
Data Bus Width
32 bit
Data Ram Size
26 KB
Interface Type
CAN, QSPI, SCI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
101
Operating Supply Voltage
3.3 V to 5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
Development Tools By Supplier
MPC555CMEE
Minimum Operating Temperature
- 85 C
On-chip Adc
10 bit, 32 Channel
Cpu Family
MPC55xx
Device Core
PowerPC
Device Core Size
32b
Frequency (max)
40MHz
Total Internal Ram Size
32KB
# I/os (max)
101
Operating Supply Voltage (typ)
5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
272
Package Type
BGA
For Use With
MPC555CMEE - KIT EVAL FOR MPC555
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-
Lead Free Status / Rohs Status
No

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MPC555LFMZP40
Manufacturer:
MOTOLOLA
Quantity:
853
Part Number:
MPC555LFMZP40
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MPC555LFMZP40
Manufacturer:
MOT
Quantity:
2
Part Number:
MPC555LFMZP40R2
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
MPC555
USER’S MANUAL
SCCxR1 determines whether TXD is an open drain (wired-OR) output or a normal
CMOS output. An external pull-up resistor on TXD is necessary for wired-OR opera-
tion. WOMS controls TXD function, regardless of whether the pin is used by the SCI
or as a general-purpose output pin.
Data to be transmitted is written to SCxDR, then transferred to the serial shifter. Before
writing to TDRx, the user should check the transmit data register empty (TDRE) flag
in SCxSR. When TDRE = 0, the TDRx contains data that has not been transferred to
the shifter. Writing to SCxDR again overwrites the data. If TDRE = 1, then TDRx is
empty, and new data may be written to TDRx, clearing TDRE.
As soon as the data in the transmit serial shifter has shifted out and if a new data frame
is in TDRx (TDRE = 0), then the new data is transferred from TDRx to the transmit se-
rial shifter and TDRE is set automatically. An interrupt may optionally be generated at
this point.
The transmission complete (TC) flag in SCxSR shows transmitter shifter state. When
TC = 0, the shifter is busy. TC is set when all shifting operations are completed. TC is
not automatically cleared. The processor must clear it by first reading SCxSR while TC
is set, then writing new data to SCxDR, or writing to SCTQ[0:15] for transmit queue
operation.
The state of the serial shifter is checked when the TE bit is set. If TC = 1, an idle frame
is transmitted as a preamble to the following data frame. If TC = 0, the current opera-
tion continues until the final bit in the frame is sent, then the preamble is transmitted.
The TC bit is set at the end of preamble transmission.
The SBK bit in SCCxR1 is used to insert break frames in a transmission. A non-zero
integer number of break frames are transmitted while SBK is set. Break transmission
begins when SBK is set, and ends with the transmission in progress at the time either
SBK or TE is cleared. If SBK is set while a transmission is in progress, that transmis-
sion finishes normally before the break begins. To ensure the minimum break time,
toggle SBK quickly to one and back to zero. The TC bit is set at the end of break trans-
mission. After break transmission, at least one bit-time of logic level one (mark idle) is
transmitted to ensure that a subsequent start bit can be detected.
If TE remains set, after all pending idle, data and break frames are shifted out, TDRE
and TC are set and TXD is held at logic level one (mark).
When TE is cleared, the transmitter is disabled after all pending idle, data, and break
frames are transmitted. The TC flag is set, and control of the TXD pin reverts to
PQSPAR and DDRQS. Buffered data is not transmitted after TE is cleared. To avoid
losing data in the buffer, do not clear TE until TDRE is set.
Some serial communication systems require a mark on the TXD pin even when the
transmitter is disabled. Configure the TXD pin as an output, then write a one to either
QDTX1 or QDTX2 of the PORTQS register. See 14.6.1. When the transmitter releases
control of the TXD pin, it reverts to driving a logic one output.
/
MPC556
Freescale Semiconductor, Inc.
QUEUED SERIAL MULTI-CHANNEL MODULE
For More Information On This Product,
Go to: www.freescale.com
Rev. 15 October 2000
MOTOROLA
14-53

Related parts for MPC555LFMZP40