MC68LK332ACAG16 Freescale Semiconductor, MC68LK332ACAG16 Datasheet - Page 26

IC MCU 32BIT LV AMASK 144-LQFP

MC68LK332ACAG16

Manufacturer Part Number
MC68LK332ACAG16
Description
IC MCU 32BIT LV AMASK 144-LQFP
Manufacturer
Freescale Semiconductor
Series
M683xxr
Datasheets

Specifications of MC68LK332ACAG16

Core Processor
CPU32
Core Size
32-Bit
Speed
16.78MHz
Connectivity
EBI/EMI, SCI, SPI, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
15
Program Memory Type
ROMless
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
144-LQFP
Processor Series
M683xx
Core
CPU32
Data Bus Width
32 bit
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Interface Type
QSPI, SCI, UART
Minimum Operating Temperature
- 40 C
No. Of I/o's
15
Ram Memory Size
2KB
Cpu Speed
16MHz
No. Of Timers
16
Embedded Interface Type
QSPI, SCI, UART
Digital Ic Case Style
LQFP
Rohs Compliant
Yes
Data Ram Size
2 KB
Number Of Programmable I/os
15
Number Of Timers
16
Cpu Family
68K/M683xx
Device Core
ColdFire
Device Core Size
32b
Frequency (max)
16MHz
Program Memory Size
Not Required
Total Internal Ram Size
2KB
# I/os (max)
15
Number Of Timers - General Purpose
16
Operating Supply Voltage (typ)
5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
144
Package Type
LQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68LK332ACAG16
Manufacturer:
MOTOLOLA
Quantity:
1 045
Part Number:
MC68LK332ACAG16
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
3.4 External Bus Interface
3.4.1 Bus Control Signals
3.4.2 Function Codes
26
MOTOROLA
The external bus interface (EBI) transfers information between the internal MCU bus and external de-
vices. The external bus has 24 address lines and 16 data lines.
The EBI provides dynamic sizing between 8-bit and 16-bit data accesses. It supports byte, word, and
long-word transfers. Ports are accessed through the use of asynchronous cycles controlled by the data
transfer (SIZ1 and SIZ0) and data size acknowledge pins (DSACK1 and DSACK0). Multiple bus cycles
may be required for a transfer to or from an 8-bit port.
Port width is the maximum number of bits accepted or provided during a bus transfer. External devices
must follow the handshake protocol described below. Control signals indicate the beginning of the cycle,
the address space, the size of the transfer, and the type of cycle. The selected device controls the length
of the cycle. Strobe signals, one for the address bus and another for the data bus, indicate the validity
of an address and provide timing information for data. The EBI operates in an asynchronous mode for
any port width.
To add flexibility and minimize the necessity for external logic, MCU chip-select logic can be synchro-
nized with EBI transfers. Chip-select logic can also provide internally-generated bus control signals for
these accesses. Refer to 3.5 Chip Selects for more information.
The CPU initiates a bus cycle by driving the address, size, function code, and read/write outputs. At the
beginning of the cycle, size signals SIZ0 and SIZ1 are driven along with the function code signals. The
size signals indicate the number of bytes remaining to be transferred during an operand cycle. They are
valid while the address strobe (AS) is asserted. The following table shows SIZ0 and SIZ1 encoding. The
read/write (R/W) signal determines the direction of the transfer during a bus cycle. This signal changes
state, when required, at the beginning of a bus cycle, and is valid while AS is asserted. R/W only chang-
es state when a write cycle is preceded by a read cycle or vice versa. The signal can remain low for two
consecutive write cycles.
The CPU32 automatically generates function code signals FC[2:0]. The function codes can be consid-
ered address extensions that automatically select one of eight address spaces to which an address ap-
plies. These spaces are designated as either user or supervisor, and program or data spaces. Address
space 7 is designated CPU space. CPU space is used for control information not normally associated
with read or write bus cycles. Function codes are valid while AS is asserted.
Freescale Semiconductor, Inc.
For More Information On This Product,
SIZ1
0
1
1
0
Table 8 Size Signal Encoding
Go to: www.freescale.com
SIZ0
1
0
1
0
Transfer Size
Three Byte
Long Word
Word
Byte
MC68332TS/D
MC68332