ATMEGA325PV-10MU Atmel, ATMEGA325PV-10MU Datasheet - Page 61

IC MCU AVR 32K FLASH 64-QFN

ATMEGA325PV-10MU

Manufacturer Part Number
ATMEGA325PV-10MU
Description
IC MCU AVR 32K FLASH 64-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA325PV-10MU

Core Processor
AVR
Core Size
8-Bit
Speed
10MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-MLF®, 64-QFN
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI, UART, USI
Maximum Clock Frequency
10 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFPATAVRISP2 - PROGRAMMER AVR IN SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
ATMEGA325PV-8MU
ATMEGA325PV-8MU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA325PV-10MU
Manufacturer:
ATMEL
Quantity:
3 500
12.3.3
61
ATmega325P/3250P
EIFR – External Interrupt Flag Register
• Bit 7 – PCIF3: Pin Change Interrupt Flag 3
When a logic change on any PCINT30:24 pin triggers an interrupt request, PCIF3 becomes set
(one). If the I-bit in SREG and the PCIE3 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.
This bit is reserved bit in ATmega325P and will always be read as zero.
• Bit 6 – PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT24:16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.
This bit is reserved bit in ATmega325P and will always be read as zero.
• Bit 5 – PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT15:8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.
• Bit 4 – PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT7:0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.
• Bit 0 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set
(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.
Bit
0x1C (0x3C)
Read/Write
Initial Value
PCIF3
R/W
7
0
PCIF2
R/W
6
0
PCIF1
R/W
5
0
PCIF0
R/W
4
0
R
3
0
R
2
0
R
1
0
INTF0
R/W
0
0
8023F–AVR–07/09
EIFR

Related parts for ATMEGA325PV-10MU