C8051F930-GQ Silicon Laboratories Inc, C8051F930-GQ Datasheet - Page 244

IC 8051 MCU 64K FLASH 32-LQFP

C8051F930-GQ

Manufacturer Part Number
C8051F930-GQ
Description
IC 8051 MCU 64K FLASH 32-LQFP
Manufacturer
Silicon Laboratories Inc
Series
C8051F9xxr
Datasheets

Specifications of C8051F930-GQ

Program Memory Type
FLASH
Program Memory Size
64KB (64K x 8)
Package / Case
32-LQFP
Core Processor
8051
Core Size
8-Bit
Speed
25MHz
Connectivity
SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
24
Ram Size
4.25K x 8
Voltage - Supply (vcc/vdd)
0.9 V ~ 3.6 V
Data Converters
A/D 23x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
C8051F9x
Core
8051
Data Bus Width
8 bit
Data Ram Size
4.25 KB
Interface Type
I2C/SMBus/SPI/UART
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
24
Number Of Timers
4
Operating Supply Voltage
0.9 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Development Tools By Supplier
C8051F930DK
Minimum Operating Temperature
- 40 C
On-chip Adc
23-ch x 10-bit
No. Of I/o's
24
Ram Memory Size
4KB
Cpu Speed
25MHz
No. Of Timers
4
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
336-1478 - PLATFORM PROG TOOLSTCK F920,F930336-1477 - PLATFORM PROG TOOLSTCK F920,F930336-1473 - KIT DEV C8051F920,F921,F930,F931336-1472 - BOARD TARGET/PROTO W/C8051F930
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1466

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F930-GQ
Manufacturer:
SILICON
Quantity:
3 500
Part Number:
C8051F930-GQ
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F930-GQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F930-GQR
Manufacturer:
SILICON LABS/芯科
Quantity:
20 000
C8051F93x-C8051F92x
22.4.3. Hardware Slave Address Recognition
The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an
ACK without software intervention. Automatic slave address recognition is enabled by setting the EHACK
bit in register SMB0ADM to 1. This will enable both automatic slave address recognition and automatic
hardware ACK generation for received bytes (as a master or slave). More detail on automatic hardware
ACK generation can be found in Section 22.4.2.2.
The registers used to define which address(es) are recognized by the hardware are the SMBus Slave
Address register (SFR Definition 22.3) and the SMBus Slave Address Mask register (SFR Definition 22.4).
A single address or range of addresses (including the General Call Address 0x00) can be specified using
these two registers. The most-significant seven bits of the two registers are used to define which
addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison
between the received slave address and the hardware’s slave address SLV[6:0] for those bits. A 0 in a bit
of the slave address mask means that bit will be treated as a “don’t care” for comparison purposes. In this
case, either a 1 or a 0 value are acceptable on the incoming slave address. Additionally, if the GC bit in
register SMB0ADR is set to 1, hardware will recognize the General Call Address (0x00). Table 22.4 shows
some example parameter settings and the slave addresses that will be recognized by hardware under
those conditions. Refer to the C8051F930 errata when using hardware ACK generation on
C8051F930/31/20/21 devices.
244
Hardware Slave Address
SLV[6:0]
0x34
0x34
0x34
0x34
0x70
Table 22.4. Hardware Address Recognition Examples (EHACK = 1)
Slave Address Mask
SLVM[6:0]
0x7F
0x7F
0x7E
0x7E
0x73
Rev. 1.1
GC bit
0
1
0
1
0
Slave Addresses Recognized by
Hardware
0x34
0x34, 0x00 (General Call)
0x34, 0x35
0x34, 0x35, 0x00 (General Call)
0x70, 0x74, 0x78, 0x7C

Related parts for C8051F930-GQ