MC912D60CCPVE Freescale Semiconductor, MC912D60CCPVE Datasheet - Page 352

IC MCU 16BIT 112-LQFP

MC912D60CCPVE

Manufacturer Part Number
MC912D60CCPVE
Description
IC MCU 16BIT 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HC12r
Datasheet

Specifications of MC912D60CCPVE

Core Processor
CPU12
Core Size
16-Bit
Speed
8MHz
Connectivity
CAN, MI Bus, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
68
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 16x8/10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Processor Series
HC912D
Core
HC12
Data Bus Width
16 bit
Data Ram Size
2 KB
Interface Type
CAN, SCI, SPI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
86
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC912D60CCPVE
Manufacturer:
FREESCAL
Quantity:
203
Part Number:
MC912D60CCPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Analog-to-Digital Converter
18.4 Functional Description
18.4.1 Analog Input Multiplexer
18.4.2 Sample Buffer Amplifier
Technical Data
352
NOTE:
The MCU can discover when result data is available in the result
registers with an interrupt on sequence complete or by polling the
conversion complete flags
ATD conversion modes should not be confused with MCU operating
modes such as STOP, WAIT, IDLE, RUN, DEBUG, and SPECIAL (test)
modes or with module defined operating modes such as power down,
fast flag clear, 8-bit resolution, 10-bit resolution, interrupt enable, clock
prescaler setting, and freeze modes; and finally do not confuse with
module result data formats such as right justify mode and left justify
mode.
The analog input multiplexer selects one of the 8 external analog input
channels to generate an analog sample. The input analog signals are
unipolar and must fall within the potential range of VSSA to VDDA
(analog electronics supply potentials).
A sample amplifier is used to buffer the input analog signal so that a
storage node can be quickly charged to the sample potential.
WAIT is executed (if the ASWAI bit is activated)
STOP is executed.
The SCF bit is set after the completion of each sequence.
The CCF bit associated with each result register is set when that
register is loaded with result data.
Analog-to-Digital Converter
MC68HC912D60A — Rev. 3.1
Freescale Semiconductor

Related parts for MC912D60CCPVE