MMC2107CFCPV33 Freescale Semiconductor, MMC2107CFCPV33 Datasheet - Page 169

no-image

MMC2107CFCPV33

Manufacturer Part Number
MMC2107CFCPV33
Description
IC MCU 33MHZ 128K FLASH 144-LQFP
Manufacturer
Freescale Semiconductor
Series
MCorer
Datasheet

Specifications of MMC2107CFCPV33

Core Processor
M210
Core Size
32-Bit
Speed
33MHz
Connectivity
EBI/EMI, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
72
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
144-LQFP
Data Bus Width
32 bit
Data Ram Size
8 KB
Interface Type
SCI, SPI
Maximum Clock Frequency
33 MHz
Number Of Programmable I/os
32
Number Of Timers
4 bit
Operating Supply Voltage
0 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-
Lead Free Status / Rohs Status
No RoHS Version Available

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MMC2107CFCPV33
Manufacturer:
AMD
Quantity:
1 001
Part Number:
MMC2107CFCPV33
Manufacturer:
MOTOLOLA
Quantity:
745
Part Number:
MMC2107CFCPV33
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MMC2107CFCPV33
Manufacturer:
MOT
Quantity:
2
Part Number:
MMC2107CFCPV33
Manufacturer:
FREESCALE
Quantity:
20 000
7.8.3 Autovectored and Vectored Interrupt Requests
MMC2107 – Rev. 2.0
MOTOROLA
If an interrupt is pending at a given priority level and both the
corresponding FIER and NIER bits are set, then both the corresponding
FIPR and NIPR bits are set, assuming these bits are not masked.
Fast interrupt requests always have priority over normal interrupt
requests, even if the normal interrupt request is at a higher priority level
than the highest fast interrupt request.
If the fast interrupt signal is asserted when the normal interrupt signal is
already asserted, then the normal interrupt signal is negated.
IPR, NIPR, and FIPR are read-only. To clear a pending interrupt, the
interrupt must be cleared at the source using a special clearing
sequence defined by each source. All interrupt sources to the interrupt
controller are to be held until recognized and cleared by the interrupt
service routine. The interrupt controller does not have any edge-detect
logic. Edge-triggered interrupt sources are handled at the source
module.
In ICR, the MASK[4:0] bits can mask interrupt sources at and below a
selected priority level. The MFI bit determines whether the mask applies
only to normal interrupts or to fast interrupts with all normal interrupts
being masked. The ME bit enables interrupt masking.
ISR reflects the current vector number and the states of the signals to
the M•CORE processor.
The vector number and fast/normal interrupt sources are synchronized
before being sent to the M•CORE processor. Thus, the interrupt
controller adds one clock of latency to the interrupt sequence. The fast
and normal interrupt raw sources are not synchronized to allow these
signals to be used to wake up the M•CORE processor during stop mode
when all system clocks are stopped.
The AE bit in ICR enables autovectored interrupt requests to the
M•CORE processor. AE is set by default, and all interrupt requests are
autovectored. An interrupt handler may read FIPR or NIPR to determine
the priority of the interrupt source. If multiple interrupt sources share the
same priority level, then it is up to the interrupt service routine to
determine the correct source of the interrupt.
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
Interrupt Controller Module
Interrupt Controller Module
Functional Description
Technical Data
169

Related parts for MMC2107CFCPV33