XC4010E-3PQ160I Xilinx Inc, XC4010E-3PQ160I Datasheet - Page 4

no-image

XC4010E-3PQ160I

Manufacturer Part Number
XC4010E-3PQ160I
Description
IC FPGA I-TEMP 5V 3SPD 160-PQFP - XC4010E-3PQ160I
Manufacturer
Xilinx Inc
Series
XC4000E/Xr
Datasheet

Specifications of XC4010E-3PQ160I

Number Of Logic Elements/cells
950
Number Of Labs/clbs
400
Total Ram Bits
12800
Number Of I /o
129
Number Of Gates
10000
Voltage - Supply
4.5 V ~ 5.5 V
Mounting Type
Surface Mount
Operating Temperature
-40°C ~ 100°C
Package / Case
160-BQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
XC4010E-3PQ160I
Manufacturer:
TE
Quantity:
1 000
Part Number:
XC4010E-3PQ160I
Manufacturer:
Xilinx Inc
Quantity:
10 000
Part Number:
XC4010E-3PQ160I
Manufacturer:
XILINX
0
Part Number:
XC4010E-3PQ160I
Manufacturer:
XILINX/赛灵思
Quantity:
20 000
Part Number:
XC4010E-3PQ160I700
Manufacturer:
XILINX
0
XC4000E and XC4000X Series Field Programmable Gate Arrays
Input Thresholds
The input thresholds of 5V devices can be globally config-
ured for either TTL (1.2 V threshold) or CMOS (2.5 V
threshold), just like XC2000 and XC3000 inputs. The two
global adjustments of input threshold and output level are
independent of each other. The XC4000XL family has an
input threshold of 1.6V, compatible with both 3.3V CMOS
and TTL levels.
Global Signal Access to Logic
There is additional access from global clocks to the F and
G function generator inputs.
Configuration Pin Pull-Up Resistors
During configuration, these pins have weak pull-up resis-
tors. For the most popular configuration mode, Slave
Serial, the mode pins can thus be left unconnected. The
three mode inputs can be individually configured with or
without weak pull-up or pull-down resistors. A pull-down
resistor value of 4.7 k is recommended.
The three mode inputs can be individually configured with
or without weak pull-up or pull-down resistors after configu-
ration.
The PROGRAM input pin has a permanent weak pull-up.
Soft Start-up
Like the XC3000A, XC4000 Series devices have “Soft
Start-up.” When the configuration process is finished and
the device starts up, the first activation of the outputs is
automatically slew-rate limited. This feature avoids poten-
tial ground bounce when all outputs are turned on simulta-
neously. Immediately after start-up, the slew rate of the
individual outputs is, as in the XC4000 family, determined
by the individual configuration option.
XC4000 and XC4000A Compatibility
Existing XC4000 bitstreams can be used to configure an
XC4000E device. XC4000A bitstreams must be recompiled
for use with the XC4000E due to improved routing
resources, although the devices are pin-for-pin compatible.
6-8
Product Obsolete or Under Obsolescence
Additional Improvements in XC4000X Only
Increased Routing
New interconnect in the XC4000X includes twenty-two
additional vertical lines in each column of CLBs and twelve
new horizontal lines in each row of CLBs. The twelve “Quad
Lines” in each CLB row and column include optional repow-
ering buffers for maximum speed. Additional high-perfor-
mance routing near the IOBs enhances pin flexibility.
Faster Input and Output
A fast, dedicated early clock sourced by global clock buffers
is available for the IOBs. To ensure synchronization with the
regular global clocks, a Fast Capture latch driven by the
early clock is available. The input data can be initially
loaded into the Fast Capture latch with the early clock, then
transferred to the input flip-flop or latch with the low-skew
global clock. A programmable delay on the input can be
used to avoid hold-time requirements. See
nals” on page 20
Latch Capability in CLBs
Storage elements in the XC4000X CLB can be configured
as either flip-flops or latches. This capability makes the
FPGA highly synthesis-compatible.
IOB Output MUX From Output Clock
A multiplexer in the IOB allows the output clock to select
either the output data or the IOB clock enable as the output
to the pad. Thus, two different data signals can share a sin-
gle output pad, effectively doubling the number of device
outputs without requiring a larger, more expensive pack-
age. This multiplexer can also be configured as an
AND-gate to implement a very fast pin-to-pin path. See
“IOB Output Signals” on page 23
Additional Address Bits
Larger devices require more bits of configuration data. A
daisy chain of several large XC4000X devices may require
a PROM that cannot be addressed by the eighteen address
bits supported in the XC4000E. The XC4000X Series
therefore extends the addressing in Master Parallel config-
uration mode to 22 bits.
for more information.
May 14, 1999 (Version 1.6)
for more information.
“IOB Input Sig-
R

Related parts for XC4010E-3PQ160I