IRFP4768PBF International Rectifier, IRFP4768PBF Datasheet - Page 5

MOSFET N-CH 250V 93A TO-247AC

IRFP4768PBF

Manufacturer Part Number
IRFP4768PBF
Description
MOSFET N-CH 250V 93A TO-247AC
Manufacturer
International Rectifier
Series
HEXFET®r
Datasheet

Specifications of IRFP4768PBF

Fet Type
MOSFET N-Channel, Metal Oxide
Fet Feature
Standard
Rds On (max) @ Id, Vgs
17.5 mOhm @ 56A, 10V
Drain To Source Voltage (vdss)
250V
Current - Continuous Drain (id) @ 25° C
93A
Vgs(th) (max) @ Id
5V @ 250µA
Gate Charge (qg) @ Vgs
270nC @ 10V
Input Capacitance (ciss) @ Vds
10880pF @ 50V
Power - Max
520W
Mounting Type
Through Hole
Package / Case
TO-247-3 (Straight Leads), TO-247AC
Transistor Polarity
N-Channel
Drain-source Breakdown Voltage
250 V
Gate-source Breakdown Voltage
20 V
Continuous Drain Current
93 A
Power Dissipation
520 W
Mounting Style
Through Hole
Gate Charge Qg
180 nC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
IRFP4768PBF
Manufacturer:
IXYS
Quantity:
12 000
Part Number:
IRFP4768PBF
Manufacturer:
IR
Quantity:
20 000
Part Number:
IRFP4768PBF
0
Company:
Part Number:
IRFP4768PBF
Quantity:
3 000
Company:
Part Number:
IRFP4768PBF
Quantity:
5 688
Company:
Part Number:
IRFP4768PBF
Quantity:
400
www.irf.com
Fig 15. Maximum Avalanche Energy vs. Temperature
800
700
600
500
400
300
200
100
0
25
1000
0.0001
100
0.001
0.1
0.01
10
Starting T J , Junction Temperature (°C)
1.0E-06
0.1
1
1E-006
1
50
0.05
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.10
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
D = 0.50
TOP
BOTTOM 1.0% Duty Cycle
I D = 56A
75
Duty Cycle = Single Pulse
0.02
0.20
0.05
0.01
0.10
0.01
100
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
Single Pulse
1.0E-05
125
Fig 14. Typical Avalanche Current vs.Pulsewidth
150
0.0001
175
t 1 , Rectangular Pulse Duration (sec)
1.0E-04
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
2. Safe operation in Avalanche is allowed as long asT
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
6. I
7. ∆T
tav (sec)
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
during avalanche).
25°C in Figure 14, 15).
t
D = Duty cycle in avalanche = t
Z
av
av =
thJC
D (ave)
τ
0.001
J
= Allowable avalanche current.
τ
=
J
τ
Average time in avalanche.
(D, t
1
Allowable rise in junction temperature, not to exceed T
Ci= τi/Ri
τ
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
1
Ci τi/Ri
= Average power dissipation per single avalanche pulse.
av
1.0E-03
) = Transient thermal resistance, see Figures 13)
R
jmax
1
R
1
. This is validated for every part type.
τ
2
R
τ
2
P
2
R
D (ave)
2
0.01
R
τ
3
3
R
= 1/2 ( 1.3·BV·I
τ
I
E
av
3
3
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
AS (AR)
= 2DT/ [1.3·BV·Z
τ
C
av
τ
1.0E-02
Ri (°C/W)
·f
0.0634
0.1109
0.1148
= P
D (ave)
0.1
av
) = DT/ Z
·t
0.000278
0.005836
0.053606
th
av
τi (sec)
IRFP4768PbF
]
jmax
thJC
1.0E-01
jmax
is not exceeded.
(assumed as
1
5

Related parts for IRFP4768PBF