ATmega168P Atmel Corporation, ATmega168P Datasheet - Page 242
ATmega168P
Manufacturer Part Number
ATmega168P
Description
Manufacturer
Atmel Corporation
Specifications of ATmega168P
Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes
Available stocks
Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
ATmega168P-20AU
Manufacturer:
ATMEL
Quantity:
1 250
Company:
Part Number:
ATmega168P-20MU
Manufacturer:
ATMEL
Quantity:
12 000
Part Number:
ATmega168P-20MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATmega168PA-15AZ
Manufacturer:
VAC
Quantity:
120
Company:
Part Number:
ATmega168PA-15MZ
Manufacturer:
TOSHIBA
Quantity:
1 000
Company:
Part Number:
ATmega168PA-AU
Manufacturer:
Atmel
Quantity:
2 902
Part Number:
ATmega168PA-AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
ATmega168PA-MMH
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
22.9.5
22.9.6
242
ATmega48P/88P/168P
TWAR – TWI (Slave) Address Register
TWAMR – TWI (Slave) Address Mask Register
of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the
ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.
• Bits 7:0 – TWD: TWI Data Register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.
The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.
The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.
• Bits 7:1 – TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit.
• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.
• Bits 7:1 – TWAM: TWI Address Mask
The TWAMR can be loaded with a 7-bit Salve Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR.
detail.
Bit
(0xBA)
Read/Write
Initial Value
Bit
(0xBD)
Read/Write
Initial Value
TWA6
R/W
R/W
7
1
7
0
TWA5
R/W
R/W
6
1
6
0
TWA4
R/W
R/W
5
0
5
1
TWAM[6:0]
TWA3
R/W
R/W
4
1
4
0
Figure 22-22
TWA2
R/W
R/W
3
0
3
1
TWA1
R/W
R/W
shown the address match logic in
2
0
2
1
TWA0
R/W
R/W
1
0
1
1
TWGCE
R/W
R
0
–
0
0
0
8025M–AVR–6/11
TWAMR
TWAR