LPC1759FBD80 NXP Semiconductors, LPC1759FBD80 Datasheet - Page 19

The LPC1759 is a Cortex-M3 microcontroller for embedded applications featuring a high level of integration and low power consumption at frequencies of 120 MHz

LPC1759FBD80

Manufacturer Part Number
LPC1759FBD80
Description
The LPC1759 is a Cortex-M3 microcontroller for embedded applications featuring a high level of integration and low power consumption at frequencies of 120 MHz
Manufacturer
NXP Semiconductors
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1759FBD80
Manufacturer:
MICROCHIP
Quantity:
12 000
Part Number:
LPC1759FBD80
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
LPC1759FBD80
0
Part Number:
LPC1759FBD80,551
Manufacturer:
LT
Quantity:
375
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP/恩智浦
Quantity:
20 000
NXP Semiconductors
LPC1759_58_56_54_52_51
Product data sheet
7.12.1.1 Features
7.12.1 USB device controller
7.12 USB interface
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a
host and one or more (up to 127) peripherals. The host controller allocates the USB
bandwidth to attached devices through a token-based protocol. The bus supports hot
plugging and dynamic configuration of the devices. All transactions are initiated by the
host controller.
The LPC1759/58/56/54 USB interface includes a device, Host, and OTG controller with
on-chip PHY for device and Host functions. The OTG switching protocol is supported
through the use of an external controller. Details on typical USB interfacing solutions can
be found in
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It
consists of a register interface, serial interface engine, endpoint buffer memory, and a
DMA controller. The serial interface engine decodes the USB data stream and writes data
to the appropriate endpoint buffer. The status of a completed USB transfer or error
condition is indicated via status registers. An interrupt is also generated if enabled. When
enabled, the DMA controller transfers data between the endpoint buffer and the on-chip
SRAM.
– Receive filtering.
– Multicast and broadcast frame support for both transmit and receive.
– Optional automatic Frame Check Sequence (FCS) insertion with Cyclic
– Selectable automatic transmit frame padding.
– Over-length frame support for both transmit and receive allows any length frames.
– Promiscuous receive mode.
– Automatic collision back-off and frame retransmission.
– Includes power management by clock switching.
– Wake-on-LAN power management support allows system wake-up: using the
Physical interface:
– Attachment of external PHY chip through standard RMII interface.
– PHY register access is available via the MIIM interface.
Fully compliant with USB 2.0 specification (full speed).
Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.
Supports Control, Bulk, Interrupt and Isochronous endpoints.
Scalable realization of endpoints at run time.
Endpoint Maximum packet size selection (up to USB maximum specification) by
software at run time.
Supports SoftConnect and GoodLink features.
Redundancy Check (CRC) for transmit.
receive filters or a magic frame detection filter.
Section
All information provided in this document is subject to legal disclaimers.
14.1. The LPC1752/51 include a USB device controller only.
Rev. 7 — 29 March 2011
LPC1759/58/56/54/52/51
32-bit ARM Cortex-M3 microcontroller
© NXP B.V. 2011. All rights reserved.
19 of 74

Related parts for LPC1759FBD80