MC908AP64CFAE Freescale Semiconductor, MC908AP64CFAE Datasheet - Page 233

IC MCU 64K 8MHZ SPI 48-LQFP

MC908AP64CFAE

Manufacturer Part Number
MC908AP64CFAE
Description
IC MCU 64K 8MHZ SPI 48-LQFP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheets

Specifications of MC908AP64CFAE

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
I²C, IRSCI, SCI, SPI
Peripherals
LED, LVD, POR, PWM
Number Of I /o
32
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-LQFP
Cpu Family
HC08
Device Core Size
8b
Frequency (max)
8MHz
Interface Type
SCI/SPI
Total Internal Ram Size
2KB
# I/os (max)
32
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
48
Package Type
LQFP
Controller Family/series
HC08
No. Of I/o's
32
Ram Memory Size
2KB
Cpu Speed
8MHz
No. Of Timers
2
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
Processor Series
HC08AP
Core
HC08
Data Bus Width
8 bit
Data Ram Size
2 KB
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
32
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
FSICEBASE, DEMO908AP64E, M68CBL05CE
Minimum Operating Temperature
- 40 C
Package
48LQFP
Family Name
HC08
Maximum Speed
8 MHz
Operating Supply Voltage
3.3|5 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC908AP64CFAE
Manufacturer:
Freescale
Quantity:
3 359
Part Number:
MC908AP64CFAE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC908AP64CFAER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
14.5 Multi-Master IIC Bus Protocol
Normally a standard communication is composed of four parts:
These are described briefly in the following sections and illustrated in
14.5.1 START Signal
When the bus is free, (i.e. no master device is engaging the bus — both SCL and SDA lines are at logic
high) a master may initiate communication by sending a START signal. As shown in
START signal is defined as a high to low transition of SDA while SCL is high. This signal denotes the
beginning of a new data transfer (each data transfer may contain several bytes of data) and wakes up all
slaves.
14.5.2 Slave Address Transmission
The first byte transferred immediately after the START signal is the slave address transmitted by the
master. This is a 7-bit calling address followed by a R/W-bit. The R/W-bit dictates to the slave the desired
direction of the data transfer. A logic 0 indicates that the master wishes to transmit data to the slave; a
logic 1 indicates that the master wishes to receive data from the slave.
Freescale Semiconductor
1. START signal,
2. slave address transmission,
3. data transfer, and
4. STOP signal.
SDA
SDA
SCL
SCL
START
START
signal
signal
MSB
MSB
1
1
Figure 14-2. Multi-Master IIC Bus Transmission Signal Diagram
1
1
0
0
0
0
0
0
MC68HC908AP Family Data Sheet, Rev. 4
0
0
1
1
LSB
9th clock pulse
LSB
1
1
ACK
ACK
Repeated
START
signal
MSB
MSB
1
1
1
1
Data must be stable
when SCL is HIGH
0
0
Figure
1
1
14-2.
Multi-Master IIC Bus Protocol
0
0
0
0
Figure
1
1
9th clock pulse
LSB
LSB
1
1
No ACK
No ACK
14-2, a
STOP
signal
STOP
signal
231

Related parts for MC908AP64CFAE