AT90USB162-16AU Atmel, AT90USB162-16AU Datasheet - Page 142

MCU AVR USB 16K FLASH 32-TQFP

AT90USB162-16AU

Manufacturer Part Number
AT90USB162-16AU
Description
MCU AVR USB 16K FLASH 32-TQFP
Manufacturer
Atmel
Series
AVR® 90USBr
Datasheet

Specifications of AT90USB162-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, PS/2, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-TQFP, 32-VQFP
Processor Series
AT90USBx
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SPI/USART/debugWIRE
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
22
Number Of Timers
2
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATSTK525, ATSTK526, ATAVRISP2, ATAVRONEKIT, AT90USBKEY, ATEVK525
Minimum Operating Temperature
- 40 C
No. Of I/o's
22
Eeprom Memory Size
512Byte
Ram Memory Size
512Byte
Cpu Speed
16MHz
No. Of Timers
2
Embedded Interface Type
SPI, USART
Rohs Compliant
Yes
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK526 - KIT STARTER FOR AT90USB82/162ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK525 - KIT STARTER FOR AT90USBAT90USBKEY2 - KIT DEMO FOR AT90USB
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90USB162-16AU
Manufacturer:
Atmel
Quantity:
30 024
Part Number:
AT90USB162-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB162-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
AT90USB162-16AUR
Manufacturer:
Atmel
Quantity:
2 751
Part Number:
AT90USB162-16AUR
Manufacturer:
Atmel
Quantity:
10 000
16.1.2
16.1.3
142
AT90USB82/162
Master Mode
SPI Control Register – SPCR
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.
The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.
If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.
If SS is configured as an input, it must be held high to ensure Master SPI operation. If the
SS pin is driven low by peripheral circuitry when the SPI is configured as a Master with the SS
pin defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:
Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.
• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.
• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.
• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
Bit
Read/Write
Initial Value
1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG
the SPI becoming a Slave, the MOSI and SCK pins become inputs.
is set, the interrupt routine will be executed.
7
SPIE
R/W
0
6
SPE
R/W
0
5
DORD
R/W
0
4
MSTR
R/W
0
3
CPOL
R/W
0
2
CPHA
R/W
0
1
SPR1
R/W
0
0
SPR0
R/W
0
7707F–AVR–11/10
SPCR

Related parts for AT90USB162-16AU