C8051F063-GQ Silicon Laboratories Inc, C8051F063-GQ Datasheet - Page 175

IC 8051 MCU 64K FLASH 64TQFP

C8051F063-GQ

Manufacturer Part Number
C8051F063-GQ
Description
IC 8051 MCU 64K FLASH 64TQFP
Manufacturer
Silicon Laboratories Inc
Series
C8051F06xr
Datasheets

Specifications of C8051F063-GQ

Program Memory Type
FLASH
Program Memory Size
64KB (64K x 8)
Package / Case
64-TQFP, 64-VQFP
Core Processor
8051
Core Size
8-Bit
Speed
25MHz
Connectivity
CAN, SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
24
Ram Size
4.25K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 3.6 V
Data Converters
A/D 2x16b, 8x10b; D/A 2x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
C8051F0x
Core
8051
Data Bus Width
8 bit
Data Ram Size
4.25 KB
Interface Type
CAN/I2C/SMBus/SPI/UART
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
24
Number Of Timers
5
Operating Supply Voltage
2.7 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Development Tools By Supplier
C8051F060DK
Minimum Operating Temperature
- 40 C
On-chip Adc
2-ch x 16-bit
On-chip Dac
2-ch x 12-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
336-1214 - DEV KIT FOR F060/F062/F063
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1217

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F063-GQ
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
Part Number:
C8051F063-GQR
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
15.4. External Crystal Example
If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be
configured as shown in Figure 15.1, Option 1. The External Oscillator Frequency Control value (XFCN)
should be chosen from the Crystal column of the table in Figure 15.5 (OSCXCN register). For example, an
11.0592 MHz crystal requires an XFCN setting of 111b.
When the crystal oscillator is enabled, the oscillator amplitude detection circuit requires a settle time to
achieve proper bias. Introducing a blanking interval of at least 1 ms between enabling the oscillator and
checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock.
Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable
behavior. The recommended procedure is:
Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout and
external noise. The crystal should be placed as close as possible to the XTAL pins on the device. The
traces should be as short as possible and shielded with ground plane from any other traces which could
introduce noise or interference. Crystal loading capacitors should be referenced to AGND.
15.5. External RC Example
If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as
shown in Figure 15.1, Option 2. The capacitor should be no greater than 100 pF; however for very small
capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To deter-
mine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first
select the RC network value to produce the desired frequency of oscillation. If the frequency desired is
100 kHz, let R = 246 k and C = 50 pF:
f = 1.23( 10
Referring to the table in Figure 15.5, the required XFCN setting is 010.
15.6. External Capacitor Example
If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in
Figure 15.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors,
the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the
required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capaci-
tor to be used and find the frequency of oscillation from the equations below. Assume VDD = 3.0 V and C
= 50 pF:
f = KF / ( C * VDD ) = KF / ( 50 * 3 )
f = KF / 150
If a frequency of roughly 50 kHz is desired, select the K Factor from the table in Figure 15.5 as KF = 7.7:
f = 7.7 / 150 = 0.051 MHz, or 51 kHz
Therefore, the XFCN value to use in this example is 010.
Step 1. Enable the external oscillator.
Step 2. Wait at least1 ms.
Step 3. Poll for XTLVLD => ‘1’.
Step 4. Switch the system clock to the external oscillator.
3
) / RC = 1.23 ( 10
3
) / [ 246 * 50 ] = 0.1 MHz = 100 kHz
Rev. 1.2
C8051F060/1/2/3/4/5/6/7
175

Related parts for C8051F063-GQ