AD7908BRUZ Analog Devices Inc, AD7908BRUZ Datasheet - Page 23

IC ADC 8BIT 8CH 1MSPS 20-TSSOP

AD7908BRUZ

Manufacturer Part Number
AD7908BRUZ
Description
IC ADC 8BIT 8CH 1MSPS 20-TSSOP
Manufacturer
Analog Devices Inc
Datasheets

Specifications of AD7908BRUZ

Data Interface
DSP, MICROWIRE™, QSPI™, Serial, SPI™
Number Of Bits
8
Sampling Rate (per Second)
1M
Number Of Converters
1
Power Dissipation (max)
13.5mW
Voltage Supply Source
Single Supply
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
20-TSSOP (0.173", 4.40mm Width)
Resolution (bits)
8bit
Sampling Rate
1MSPS
Input Channel Type
Single Ended
Supply Voltage Range - Analog
2.7V To 5.25V
Supply Current
2.7mA
Digital Ic Case Style
TSSOP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
EVAL-AD79X8CBZ - BOARD EVALUATION FOR AD79X8
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD7908BRUZ
Manufacturer:
ADI
Quantity:
1 000
Part Number:
AD7908BRUZ
Quantity:
1 932
Part Number:
AD7908BRUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7908BRUZ-REEL
Manufacturer:
ADI
Quantity:
1 000
POWER VS. THROUGHPUT RATE
By operating in auto shutdown mode on the AD7908/AD7918/
AD7928, the average power consumption of the ADC decreases
at lower throughput rates. Figure 25 shows how as the
throughput rate is reduced, the part remains in its shutdown
state longer and the average power consumption over time
drops accordingly.
For example, if the AD7928 is operated in a continuous
sampling mode with a throughput rate of 100 kSPS and an
SCLK of 20 MHz (AV
shutdown mode, that is, if PM1 = 0 and PM0 = 1, then the
power consumption is calculated as follows:
The maximum power dissipation during normal operation is
13.5 mW (AV
shutdown is one dummy cycle, that is, 1 μs, and the remaining
conversion time is another cycle, that is, 1 μs, then the AD7928
can be said to dissipate 13.5 mW for 2 μs during each
conversion cycle. For the remainder of the conversion cycle,
8 μs, the part remains in auto shutdown mode. The AD7928 can
be said to dissipate 2.5 μW for the remaining 8 μs of the
conversion cycle. If the throughput rate is 100 kSPS, the cycle
time is 10 μs and the average power dissipated during each cycle is
(2/10) × (13.5 mW) + (8 / 10) × (2.5 μW) = 2.702 mW
Figure 25 shows the maximum power vs. throughput rate when
using the auto shutdown mode with 3 V and 5 V supplies.
DOUT
SCLK
DIN
CS
KEEP DIN LINE TIED HIGH FOR FIRST TWO DUMMY CONVERSIONS
1
DD
= 5 V). If the power-up time from auto
DUMMY CONVERSION
DD
INVALID DATA
= 5 V), and the device is placed in auto
Figure 24. Placing AD7928 into the Required Operating Mode After Supplies are Applied
12
16
1
Rev. B | Page 23 of 28
DUMMY CONVERSION
INVALID DATA
SERIAL INTERFACE
Figure 26, Figure 27, and Figure 28 show the detailed timing
diagrams for serial interfacing to the AD7908, AD7918, and
AD7928, respectively. The serial clock provides the conversion
clock and also controls the transfer of information to and from
the AD7908/AD7918/AD7928 during each conversion.
The CS signal initiates the data transfer and conversion process.
The falling edge of CS puts the track-and-hold into hold mode,
takes the bus out of three-state; the analog input is sampled at
this point. The conversion is also initiated at this point and
requires 16 SCLK cycles to complete. The track-and-hold goes
back into track on the 14th SCLK falling edge as shown in
Figure 26, Figure 27, and Figure 28 at Point B, except when the
write is to the SHADOW register, in which case the track-and-
hold does not return to track until the rising edge of CS , that is,
Point C in Figure 29. On the 16th SCLK falling edge, the DOUT
line goes back into three-state. If the rising edge of CS occurs
before 16 SCLKs have elapsed, the conversion is terminated, the
DOUT line goes back into three-state, and the control register is
not updated; otherwise DOUT returns to three-state on the
16th SCLK falling edge as shown in Figure 26, Figure 27, and
Figure 28. Sixteen serial clock cycles are required to perform the
conversion process and to access data from the AD7908/
AD7918/AD7928. For the AD7908/AD7918/AD7928, the
12
0.01
0.1
10
1
0
16
AV
DD
Figure 25. AD7928 Power vs. Throughput Rate
= 5V
50
CONTROL REGISTER IS LOADED ON THE FIRST
12 CLOCK EDGES
1
100
DATA IN TO CONTROL REGISTER
AD7908/AD7918/AD7928
THROUGHPUT (kSPS)
150
INVALID DATA
200
NEXT CONVERSION, USER CAN
CORRECT VALUE IN CONTROL
WRITE TO SHADOW REGISTER
REGISTER, VALID DATA FROM
AV
250
DD
12
IN NEXT CONVERSION
= 3V
300
16
350

Related parts for AD7908BRUZ