AT49LV8192A-90TC Atmel, AT49LV8192A-90TC Datasheet - Page 4

no-image

AT49LV8192A-90TC

Manufacturer Part Number
AT49LV8192A-90TC
Description
Manufacturer
Atmel
Datasheet

Specifications of AT49LV8192A-90TC

Cell Type
NOR
Density
8Mb
Access Time (max)
90ns
Interface Type
Parallel
Boot Type
Bottom
Address Bus
20/19Bit
Operating Supply Voltage (typ)
3.3V
Operating Temp Range
0C to 70C
Package Type
TSOP-I
Program/erase Volt (typ)
3 to 3.6V
Sync/async
Asynchronous
Operating Temperature Classification
Commercial
Operating Supply Voltage (min)
3V
Operating Supply Voltage (max)
3.6V
Word Size
8/16Bit
Number Of Words
1M/512K
Supply Current
25mA
Mounting
Surface Mount
Pin Count
48
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT49LV8192A-90TC
Manufacturer:
ATMEL
Quantity:
1 803
RESET: A RESET input pin is provided to ease some sys-
tem applications. When RESET is at a logic high level, the
device is in its standard operating mode. A low level on the
RESET input halts the present device operation and puts
the outputs of the device in a high-impedance state. When
a high level is reasserted on the RESET pin, the device
returns to the read or standby mode, depending upon the
state of the control inputs. By applying a 12V ± 0.5V input
signal to the RESET pin the boot block array can be repro-
grammed even if the boot block program lockout feature
has been enabled (see Boot Block Programming Lockout
Override section).
ERASURE: Before a byte or word can be reprogrammed, it
must be erased. The erased state of memory bits is a logic
“1”. The entire device can be erased by using the Chip
Erase command or individual sectors can be erased by
using the Sector Erase commands.
CHIP ERASE: The entire device can be erased at one time
by using the 6-byte chip erase software code. After the chip
erase has been initiated, the device will internally time the
erase operation so that no external clocks are required.
The maximum time to erase the chip is t
If the boot block lockout has been enabled, the chip erase
will not erase the data in the boot block; it will erase the
main memory block and the parameter blocks only. After
the chip erase, the device will return to the read or standby
mode.
SECTOR ERASE: As an alternative to a full chip erase, the
device is organized into four sectors that can be individually
erased. There are two 4K word parameter block sections,
one boot block, and the main memory array block. The
Sector Erase command is a six-bus cycle operation. The
sector address is latched on the falling WE edge of the
sixth cycle while the 30H data input command is latched at
the rising edge of WE. The sector erase starts after the ris-
ing edge of WE of the sixth cycle. The erase operation is
internally controlled; it will automatically time to completion.
Whenever the main memory block is erased and repro-
grammed, the two parameter blocks should be erased and
reprogrammed before the main memory block is erased
again. Whenever a parameter block is erased and repro-
grammed, the other parameter block should be erased and
reprogrammed before the first parameter block is erased
again. Whenever the boot block is erased and repro-
grammed, the main memory block and the parameter block
should be erased and reprogrammed before the boot block
is erased again.
BYTE/WORD PROGRAMMING: Once a memory block is
erased, it is programmed (to a logic “0”) on a byte-by-byte
or word-by-word basis. Programming is accomplished via
the internal device command register and is a four-bus
cycle operation. The device will automatically generate the
required internal program pulses.
4
AT49BV008A(T)/8192A(T)
EC
.
Any commands written to the chip during the embedded
programming cycle will be ignored. If a hardware reset hap-
pens during programming, the data at the location being
programmed will be corrupted. Please note that a data “0”
cannot be programmed back to a “1”; only erase operations
can convert “0”s to “1”s. Programming is completed after
the specified t
also be used to indicate the end of a program cycle.
BOOT BLOCK PROGRAMMING LOCKOUT: The device
has one designated block that has a programming lockout
feature. This feature prevents programming of data in the
designated block once the feature has been enabled. The
size of the block is 8K words. This block, referred to as the
boot block, can contain secure code that is used to bring up
the system. Enabling the lockout feature will allow the boot
code to stay in the device while data in the rest of the
device is updated. This feature does not have to be acti-
vated; the boot block’s usage as a write protected region is
optional to the user. The address range of the boot block is
00000H to 03FFFH for the AT49BV008A; FC000H to
FFFFFH for the AT49BV008AT; 00000H to 01FFFH for the
A T 4 9 B V 8 1 9 2 A ; a n d 7 E 0 0 0 H t o 7 F F F F H f o r t h e
AT49BV8192AT.
Once the feature is enabled, the data in the boot block can
no longer be erased or programmed when input levels of
5.5V or less are used. Data in the main memory block can
still be changed through the regular programming method.
To activate the lockout feature, a series of six program
commands to specific addresses with specific data must be
performed. Please refer to the Command Definitions table.
BOOT BLOCK LOCKOUT DETECTION: A software
method is available to determine if programming of the boot
block section is locked out. When the device is in the soft-
ware product identification mode (see Software Product
Identification Entry and Exit sections) a read from the fol-
lowing address location will show if programming the boot
block is locked out – 00002H for the AT49BV008A and
AT49BV8192A; FC002H for the AT49BV008AT; and
7E002H for the AT49BV8192AT. If the data on I/O0 is low,
the boot block can be programmed; if the data on I/O0 is
high, the program lockout feature has been enabled and
the block cannot be programmed. The software product
identification exit code should be used to return to standard
operation.
BOOT BLOCK PROGRAMMING LOCKOUT OVERRIDE:
The user can override the boot block programming lockout
by taking the RESET pin to 12 volts during the entire chip
erase, sector erase or word programming operation. When
the RESET pin is brought back to TTL levels the boot block
programming lockout feature is again active.
PRODUCT IDENTIFICATION: The product identification
mode identifies the device and manufacturer as Atmel. It
may be accessed by hardware or software operation. The
BP
cycle time. The Data Polling feature may

Related parts for AT49LV8192A-90TC