ATTINY2313-20PU Atmel, ATTINY2313-20PU Datasheet - Page 156

IC MCU AVR 2K FLASH 20DIP

ATTINY2313-20PU

Manufacturer Part Number
ATTINY2313-20PU
Description
IC MCU AVR 2K FLASH 20DIP
Manufacturer
Atmel
Series
AVR® ATtinyr

Specifications of ATTINY2313-20PU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
18
Program Memory Size
2KB (1K x 16)
Program Memory Type
FLASH
Eeprom Size
128 x 8
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
20-DIP (0.300", 7.62mm)
Package
20PDIP
Device Core
AVR
Family Name
ATtiny
Maximum Speed
20 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
18
Interface Type
SPI/USART/USI
Number Of Timers
2
Processor Series
ATTINY2x
Core
AVR8
Data Ram Size
128 B
Maximum Clock Frequency
20 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
Cpu Family
ATtiny
Device Core Size
8b
Frequency (max)
20MHz
Total Internal Ram Size
128Byte
# I/os (max)
18
Number Of Timers - General Purpose
2
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Through Hole
Pin Count
20
Package Type
PDIP
For Use With
ATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY2313-20PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATTINY2313-20PU
Quantity:
6 000
Company:
Part Number:
ATTINY2313-20PU
Quantity:
53
EEPROM Write
Prevents Writing to
SPMCSR
Reading the Fuse and
Lock Bits from
Software
156
ATtiny2313
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the RFLB and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the RFLB and SELFPRGEN bits are set in
SPMCSR, the value of the Lock bits will be loaded in the destination register. The RFLB and
SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM instruc-
tion is executed within three CPU cycles or no SPM instruction is executed within four CPU
cycles. When RFLB and SELFPRGEN are cleared, LPM will work as described in the Instruction
set Manual.
The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the RFLB and
SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles after
the RFLB and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB)
will be loaded in the destination register as shown below. Refer to
detailed description and mapping of the Fuse Low byte.
Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the RFLB and SELFPRGEN bits are set in the
SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as
shown below. Refer to
High byte.
Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.
Bit
Rd
Bit
Rd
Bit
Rd
FLB7
FHB7
7
7
7
FHB6
FLB6
Table 67 on page 159
6
6
6
FHB5
FLB5
5
5
5
FHB4
FLB4
4
4
4
for detailed description and mapping of the Fuse
FHB3
FLB3
3
3
3
FLB2
FHB2
2
2
2
FHB1
FLB1
LB2
1
1
1
Table 68 on page 160
FHB0
FLB0
LB1
0
0
0
2543L–AVR–08/10
for a

Related parts for ATTINY2313-20PU