DSPIC30F2010-30I/SOG Microchip Technology, DSPIC30F2010-30I/SOG Datasheet - Page 87

IC DSPIC MCU/DSP 12K 28SOIC

DSPIC30F2010-30I/SOG

Manufacturer Part Number
DSPIC30F2010-30I/SOG
Description
IC DSPIC MCU/DSP 12K 28SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F2010-30I/SOG

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
20
Program Memory Size
12KB (4K x 24)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Core Frequency
30MHz
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
20
Flash Memory Size
12KB
Supply Voltage Range
2.5V To 5.5V
Operating Temperature Range
-40°C To +85°C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MILDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
DSPIC30F201030ISO

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F2010-30I/SOG
Manufacturer:
TOS
Quantity:
453
14.4
Center aligned PWM signals are produced by the mod-
ule when the PWM time base is configured in an Up/
Down Counting mode (see Figure 14-3).
The PWM compare output is driven to the active state
when the value of the duty cycle register matches the
value of PTMR and the PWM time base is counting
downwards (PTDIR = 1). The PWM compare output is
driven to the inactive state when the PWM time base is
counting upwards (PTDIR = 0) and the value in the
PTMR register matches the duty cycle value.
If the value in a particular duty cycle register is zero,
then the output on the corresponding PWM pin will be
inactive for the entire PWM period. In addition, the out-
put on the PWM pin will be active for the entire PWM
period if the value in the duty cycle register is equal to
the value held in the PTPER register.
FIGURE 14-3:
14.5
There are four 16-bit special function registers (PDC1,
PDC2, PDC3 and PDC4) used to specify duty cycle
values for the PWM module.
The value in each duty cycle register determines the
amount of time that the PWM output is in the active
state. The duty cycle registers are 16-bits wide. The LS
bit of a duty cycle register determines whether the
PWM edge occurs in the beginning. Thus, the PWM
resolution is effectively doubled.
 2004 Microchip Technology Inc.
PTPER
Duty
Cycle
0
Center Aligned PWM
PWM Duty Cycle Comparison
Units
Period/2
CENTER ALIGNED PWM
Period
PTMR
Value
Preliminary
14.5.1
The four PWM duty cycle registers are double buffered
to allow glitchless updates of the PWM outputs. For
each duty cycle, there is a duty cycle register that is
accessible by the user and a second duty cycle register
that holds the actual compare value used in the present
PWM period.
For edge aligned PWM output, a new duty cycle value
will be updated whenever a match with the PTPER reg-
ister occurs and PTMR is reset. The contents of the
duty cycle buffers are automatically loaded into the
duty cycle registers when the PWM time base is dis-
abled (PTEN = 0) and the UDIS bit is cleared in
PWMCON2.
When the PWM time base is in the Up/Down Counting
mode, new duty cycle values are updated when the
value of the PTMR register is zero and the PWM time
base begins to count upwards. The contents of the duty
cycle buffers are automatically loaded into the duty
cycle registers when the PWM time base is disabled
(PTEN = 0).
When the PWM time base is in the Up/Down Counting
mode with double updates, new duty cycle values are
updated when the value of the PTMR register is zero,
and when the value of the PTMR register matches the
value in the PTPER register. The contents of the duty
cycle buffers are automatically loaded into the duty
cycle registers when the PWM time base is disabled
(PTEN = 0).
14.6
In the Complementary mode of operation, each pair of
PWM outputs is obtained by a complementary PWM
signal. A dead time may be optionally inserted during
device switching, when both outputs are inactive for a
short period (Refer to Section 14.7).
In Complementary mode, the duty cycle comparison
units are assigned to the PWM outputs as follows:
• PDC1 register controls PWM1H/PWM1L outputs
• PDC2 register controls PWM2H/PWM2L outputs
• PDC3 register controls PWM3H/PWM3L outputs
The Complementary mode is selected for each PWM
I/O pin pair by clearing the appropriate PMODx bit in the
PWMCON1 SFR. The PWM I/O pins are set to
Complementary mode by default upon a device Reset.
Complementary PWM Operation
DUTY CYCLE REGISTER BUFFERS
dsPIC30F2010
DS70118E-page 85

Related parts for DSPIC30F2010-30I/SOG