ATMEGA1281-16AU Atmel, ATMEGA1281-16AU Datasheet - Page 112

IC MCU AVR 128K FLASH 64-TQFP

ATMEGA1281-16AU

Manufacturer Part Number
ATMEGA1281-16AU
Description
IC MCU AVR 128K FLASH 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA1281-16AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Interface Type
2-Wire/SPI/USART
Total Internal Ram Size
8KB
# I/os (max)
54
Number Of Timers - General Purpose
6
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
8 KB
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
54
Number Of Timers
6
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATAVRRZ541, ATAVRRAVEN, ATAVRRZRAVEN, ATAVRRZUSBSTICK, ATAVRISP2, ATAVRRZ201
Minimum Operating Temperature
- 40 C
Controller Family/series
AVR MEGA
No. Of I/o's
54
Eeprom Memory Size
4KB
Ram Memory Size
8KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFPATAVRDB101 - MODULE DISPLAY LCD/RGB BACKLIGHT770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA1281-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA1281-16AU
Manufacturer:
ATMEL
Quantity:
982
Part Number:
ATMEGA1281-16AUR
Manufacturer:
Atmel
Quantity:
10 000
14. External Interrupts
14.1
2549M–AVR–09/10
Pin Change Interrupt Timing
The External Interrupts are triggered by the INT7:0 pin or any of the PCINT23:0 pins. Observe
that, if enabled, the interrupts will trigger even if the INT7:0 or PCINT23:0 pins are configured as
outputs. This feature provides a way of generating a software interrupt.
The Pin change interrupt PCI2 will trigger if any enabled PCINT23:16 pin toggles, Pin change
interrupt PCI1 if any enabled PCINT15:8 toggles and Pin change interrupts PCI0 will trigger if
any enabled PCINT7:0 pin toggles. PCMSK2, PCMSK1 and PCMSK0 Registers control which
pins contribute to the pin change interrupts. Pin change interrupts on PCINT23 :0 are detected
asynchronously. This implies that these interrupts can be used for waking the part also from
sleep modes other than Idle mode.
The External Interrupts can be triggered by a falling or rising edge or a low level. This is set up
as indicated in the specification for the External Interrupt Control Registers – EICRA (INT3:0)
and EICRB (INT7:4). When the external interrupt is enabled and is configured as level triggered,
the interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising
edge interrupts on INT7:4 requires the presence of an I/O clock, described in
page
This implies that these interrupts can be used for waking the part also from sleep modes other
than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.
Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in
An example of timing of a pin change interrupt is shown in
“System Clock and Clock Options” on page
40. Low level interrupts and the edge interrupt on INT3:0 are detected asynchronously.
ATmega640/1280/1281/2560/2561
40.
Figure 14-1 on page
113.
“Overview” on
112

Related parts for ATMEGA1281-16AU