CY7C1315BV18-200BZC Cypress Semiconductor Corp, CY7C1315BV18-200BZC Datasheet - Page 8

SRAM (Static RAM)

CY7C1315BV18-200BZC

Manufacturer Part Number
CY7C1315BV18-200BZC
Description
SRAM (Static RAM)
Manufacturer
Cypress Semiconductor Corp
Datasheet

Specifications of CY7C1315BV18-200BZC

Format - Memory
RAM
Memory Type
SRAM - Synchronous, QDR II
Memory Size
18M (512K x 36)
Speed
200MHz
Interface
Parallel
Voltage - Supply
1.7 V ~ 1.9 V
Operating Temperature
0°C ~ 70°C
Package / Case
165-LFBGA
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CY7C1315BV18-200BZC
Manufacturer:
Cypress Semiconductor Corp
Quantity:
10 000
Document Number: 38-05620 Rev. *C
will be valid 0.45 ns from the rising edge of the output clock (C
or C or (K or K when in single-clock mode)). In order to
maintain the internal logic, each read access must be allowed
to complete. Each Read access consists of four 18-bit data
words and takes 2 clock cycles to complete. Therefore, Read
accesses to the device can not be initiated on two consecutive
K clock rises. The internal logic of the device will ignore the
second Read request. Read accesses can be initiated on
every other K clock rise. Doing so will pipeline the data flow
such that data is transferred out of the device on every rising
edge of the output clocks (C and C or K and K when in
single-clock mode).
When the read port is deselected, the CY7C1313BV18 will first
complete the pending Read transactions. Synchronous
internal circuitry will automatically tri-state the outputs following
the next rising edge of the Positive Output Clock (C). This will
allow for a seamless transition between devices without the
insertion of wait states in a depth expanded memory.
Write Operations
Write operations are initiated by asserting WPS active at the
rising edge of the Positive Input Clock (K). On the following K
clock rise the data presented to D
into the lower 18-bit Write Data register, provided BWS
both asserted active. On the subsequent rising edge of the
Negative Input Clock (K) the information presented to D
is also stored into the Write Data register, provided BWS
are both asserted active. This process continues for one more
cycle until four 18-bit words (a total of 72 bits) of data are
stored in the SRAM. The 72 bits of data are then written into
the memory array at the specified location. Therefore, Write
accesses to the device can not be initiated on two consecutive
K clock rises. The internal logic of the device will ignore the
second Write request. Write accesses can be initiated on
every other rising edge of the Positive Input Clock (K). Doing
so will pipeline the data flow such that 18 bits of data can be
transferred into the device on every rising edge of the input
clocks (K and K).
When deselected, the Write port will ignore all inputs after the
pending Write operations have been completed.
Byte Write Operations
Byte Write operations are supported by the CY7C1313BV18.
A Write operation is initiated as described in the Write Opera-
tions section above. The bytes that are written are determined
by BWS
data words. Asserting the appropriate Byte Write Select input
during the data portion of a Write will allow the data being
presented to be latched and written into the device.
Deasserting the Byte Write Select input during the data portion
of a write will allow the data stored in the device for that byte
to remain unaltered. This feature can be used to simplify
Read/Modify/Write operations to a Byte Write operation.
Single Clock Mode
The CY7C1313BV18 can be used with a single clock that
controls both the input and output registers. In this mode the
device will recognize only a single pair of input clocks (K and
K) that control both the input and output registers. This
operation is identical to the operation if the device had zero
skew between the K/K and C/C clocks. All timing parameters
remain the same in this mode. To use this mode of operation,
0
and BWS
1
, which are sampled with each set of 18-bit
[17:0]
is latched and stored
[1:0]
[17:0]
[1:0]
are
the user must tie C and C HIGH at power on. This function is
a strap option and not alterable during device operation.
Concurrent Transactions
The Read and Write ports on the CY7C1313BV18 operate
completely independently of one another. Since each port
latches the address inputs on different clock edges, the user
can Read or Write to any location, regardless of the transaction
on the other port. If the ports access the same location when a
Read follows a Write in successive clock cycles, the SRAM will
deliver the most recent information associated with the
specified address location. This includes forwarding data from
a Write cycle that was initiated on the previous K clock rise.
Read accesses and Write access must be scheduled such that
one transaction is initiated on any clock cycle. If both ports are
selected on the same K clock rise, the arbitration depends on
the previous state of the SRAM. If both ports were deselected,
the Read port will take priority. If a Read was initiated on the
previous cycle, the Write port will assume priority (since Read
operations can not be initiated on consecutive cycles). If a
Write was initiated on the previous cycle, the Read port will
assume priority (since Write operations can not be initiated on
consecutive cycles). Therefore, asserting both port selects
active from a deselected state will result in alternating
Read/Write operations being initiated, with the first access
being a Read.
Depth Expansion
The CY7C1313BV18 has a Port Select input for each port.
This allows for easy depth expansion. Both Port Selects are
sampled on the rising edge of the Positive Input Clock only (K).
Each port select input can deselect the specified port.
Deselecting a port will not affect the other port. All pending
transactions (Read and Write) will be completed prior to the
device being deselected.
Programmable Impedance
An external resistor, RQ, must be connected between the ZQ
pin on the SRAM and V
output driver impedance. The value of RQ must be 5X the
value of the intended line impedance driven by the SRAM. The
allowable range of RQ to guarantee impedance matching with
a tolerance of ±15% is between 175Ω and 350Ω
V
cycles upon power-up to account for drifts in supply voltage
and temperature.
Echo Clocks
Echo clocks are provided on the QDR-II to simplify data
capture on high-speed systems. Two echo clocks are
generated by the QDR-II. CQ is referenced with respect to C
and CQ is referenced with respect to C. These are free running
clocks and are synchronized to the output clock of the QDR-II.
In the single clock mode, CQ is generated with respect to K
and CQ is generated with respect to K. The timings for the
echo clocks are shown in the AC Timing table.
DDQ
= 1.5V. The output impedance is adjusted every 1024
SS
to allow the SRAM to adjust its
CY7C1313BV18
CY7C1315BV18
CY7C1311BV18
CY7C1911BV18
Page 8 of 28
,
with
[+] Feedback

Related parts for CY7C1315BV18-200BZC