AD7142 Analog Devices, AD7142 Datasheet - Page 12

no-image

AD7142

Manufacturer Part Number
AD7142
Description
Programmable Controller for Capacitance Touch Sensors
Manufacturer
Analog Devices
Datasheet

Specifications of AD7142

Resolution (bits)
16bit
# Chan
14
Sample Rate
250kSPS
Interface
I²C/Ser 2-Wire,Ser,SPI
Analog Input Type
Diff-Uni
Ain Range
± 2 pF (Delta C)
Adc Architecture
Sigma-Delta
Pkg Type
CSP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD7142ACPZ-1
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7142ACPZ-1500
Manufacturer:
ADI
Quantity:
10
Part Number:
AD7142ACPZ-1500
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD7142ACPZ-1500RL7
Manufacturer:
ADI
Quantity:
8 000
Part Number:
AD7142ACPZ-1REEL
Manufacturer:
NXP
Quantity:
2 007
AD7142
THEORY OF OPERATION
The AD7142 and AD7142-1 are capacitance-to-digital
converters (CDCs) with on-chip environmental compensation,
intended for use in portable systems requiring high resolution
user input. The internal circuitry consists of a 16-bit, ∑-Δ con-
verter that converts a capacitive input signal into a digital value.
There are 14 input pins on the AD7142 and AD7142-1, CIN0 to
CIN13. A switch matrix routes the input signals to the CDC.
The result of each capacitance-to-digital conversion is stored in
on-chip registers. The host subsequently reads the results over
the serial interface. The AD7142 contains an SPI interface and
the AD7142-1 has an I
compatible with a wide range of host processors. Because the
AD7142 and AD7142-1 are identical parts, with the exception of
the serial interface, AD7142 refers to both the AD7142 and
AD7142-1 throughout this data sheet.
The AD7142 interfaces with up to 14 external capacitance
sensors. These sensors can be arranged as buttons, scroll bars,
wheels, or as a combination of sensor types. The external
sensors consist of electrodes on a single or multiple layer PCB
that interfaces directly to the AD7142.
The AD7142 can be set up to implement any set of input
sensors by programming the on-chip registers. The registers can
also be programmed to control features such as averaging,
offsets, and gains for each of the external sensors. There is a
sequencer on-chip to control how each of the capacitance
inputs is polled.
The AD7142 has on-chip digital logic and 528 words of RAM
that are used for environmental compensation. The effects of
humidity, temperature, and other environmental factors can
effect the operation of capacitance sensors. Transparent to the
user, the AD7142 performs continuous calibration to compen-
sate for these effects, allowing the AD7142 to give error-free
results at all times.
The AD7142 requires some minor companion software that
runs on the host or other microcontroller to implement high
resolution sensor functions such as a scroll bar or wheel.
However, no companion software is required to implement
buttons, including 8-way button functionality. Button sensors
are implemented completely in digital logic on-chip.
The AD7142 can be programmed to operate in either full power
mode, or in low power automatic wake-up mode. The
automatic wake-up mode is particularly suited for portable
devices that require low power operation giving the user
significant power savings coupled with full functionality.
The AD7142 has an interrupt output, INT , to indicate when
new data has been placed into the registers. INT is used to
interrupt the host on sensor activation. The AD7142 operates
from a 2.6 V to 3.6 V supply, and is available in a 32-lead, 5 mm ×
5 mm LFCSP_VQ.
2
C interface ensuring that the parts are
Rev. A | Page 12 of 72
CAPACITANCE SENSING THEORY
The AD7142 uses a method of sensing capacitance known as
the shunt method. Using this method, an excitation source is
connected to a transmitter generating an electric field to a
receiver. The field lines measured at the receiver are translated
into the digital domain by a ∑-Δ converter. When a finger, or
other grounded object, interferes with the electric field, some of
the field lines are shunted to ground and do not reach the
receiver (see Figure 18). Therefore, the total capacitance
measured at the receiver decreases when an object comes close
to the induced field.
In practice, the excitation source and ∑-Δ ADC are implemented
on the AD7142, and the transmitter and receiver are constructed
on a PCB that makes up the external sensor.
Registering a Sensor Activation
When a sensor is approached, the total capacitance associated
with that sensor, measured by the AD7142, changes. When the
capacitance changes to such an extent that a set threshold is
exceeded, the AD7142 registers this as a sensor touch.
Preprogrammed threshold levels are used to determine if a
change in capacitance is due to a button being activated. If the
capacitance exceeds one of the threshold limits, the AD7142
registers this as a true button activation. The same thresholds
principle is used to determine if other types of sensors, such as
sliders or scroll wheels, are activated.
AD7142
Rx
Figure 18. Sensing Capacitance Method
ADC
Σ-Δ
PCB LAYER 1
16-BIT
DATA
Tx
PLASTIC COVER
EXCITATION
SIGNAL
250kHz

Related parts for AD7142