LTC3601 Linear Technology, LTC3601 Datasheet - Page 16

no-image

LTC3601

Manufacturer Part Number
LTC3601
Description
15V Monolithic Synchronous Step-Down Regulator
Manufacturer
Linear Technology
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC3601EMSE
Manufacturer:
LT
Quantity:
10 000
Company:
Part Number:
LTC3601EMSE#TRPBF
Quantity:
2 500
Part Number:
LTC3601EUDPBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3601IMSE
Manufacturer:
LT
Quantity:
10 000
Part Number:
LTC3601IMSE
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3601IUD
Manufacturer:
LT
Quantity:
10 000
www.DataSheet4U.com
LTC3601
APPLICATIONS INFORMATION
2. The internal LDO supplies the power to the INTV
3. Other “hidden” losses such as transition loss, cop-
16
The R
obtained from the Typical Performance Characteristics
curves. Thus to obtain I
The total power loss here is the sum of the switching
losses and quiescent current losses from the control
circuitry.
Each time a power MOSFET gate is switched from low
to high to low again, a packet of charge dQ moves
from V
out of INTV
control bias current. In continuous mode, I
= f(Q
of the internal top and bottom power MOSFETs and f
is the switching frequency. For estimation purposes,
(Q
To calculate the total power loss from the LDO load,
simply add the gate charge current and quiescent cur-
rent and multiply by V
per trace resistances, and internal load currents can
account for additional effi ciency degradations in the
overall power system. Transition loss arises from the
brief amount of time the top power MOSFET spends in
the saturated region during switch node transitions. The
LTC3601 internal power devices switch quickly enough
that these losses are not signifi cant compared to other
sources.
Other losses, including diode conduction losses during
dead time and inductor core losses, generally account
for less than 2% total additional loss.
T
“I
P
+ Q
LDO
2
T
R LOSS” = I
DS(ON)
+ Q
IN
B
= (I
) on the LTC3601 is approximately 1nC.
to ground. The resulting dQ/dt is a current
B
CC
GATECHG
for both the top and bottom MOSFETs can be
), where Q
that is typically much larger than the DC
OUT
+ I
2
IN
· (R
T
Q
2
:
) • V
and Q
R loss:
SW
IN
+ R
B
are the gate charges
L
)
GATECHG
CC
rail.
Thermal Considerations
The LTC3601 requires the exposed package backplane
metal (PGND pin on the QFN, SGND pin on the MSOP
package) to be well soldered to the PC board to provide
good thermal contact. This gives the QFN and MSOP
packages exceptional thermal properties, compared to
other packages of similar size, making it diffi cult in normal
operation to exceed the maximum junction temperature
of the part. In many applications, the LTC3601 does not
dissipate much heat due to its high effi ciency and low
thermal resistance package backplane. However, in applica-
tions in which the LTC3601 is running at a high ambient
temperature, high input voltage, high switching frequency,
and maximum output current, the heat dissipated may
exceed the maximum junction temperature of the part. If
the junction temperature reaches approximately 150°C,
both power switches will be turned off until temperature
decreases approximately 10°C.
Thermal analysis should always be performed by the user
to ensure the LTC3601 does not exceed the maximum
junction temperature.
The temperature rise is given by:
where P
is the thermal resistance from the junction of the die to
the ambient temperature.
Consider the example in which an LTC3601EUD is operat-
ing with I
and an ambient temperature of 70°C. From the Typical
Performance Characteristics section the R
switch is found to be nominally 130mΩ while that of the
bottom switch is nominally 100mΩ yielding an equivalent
power MOSFET resistance R
R
DS(ON)
T
RISE
TOP • 1.8/12 + R
D
= P
OUT
is the power dissipated by the regulator and θ
D
θ
= 1.5A, V
JA
IN
DS(ON)
= 12V, f = 4MHz, V
SW
BOT • 10.2/12 = 105mΩ.
of:
DS(ON)
OUT
of the top
= 1.8V,
3601f
JA

Related parts for LTC3601