ltc3586 Linear Technology Corporation, ltc3586 Datasheet - Page 17

no-image

ltc3586

Manufacturer Part Number
ltc3586
Description
High Ef? Ciency Usb Power Manager With Boost, Buck-boost And Dual Bucks
Manufacturer
Linear Technology Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ltc3586EUFE
Manufacturer:
LT
Quantity:
10 000
Company:
Part Number:
ltc3586EUFE
Quantity:
3 099
Part Number:
ltc3586EUFE#TRPBF
Manufacturer:
LTC
Quantity:
20 000
Part Number:
ltc3586EUFE-1
Manufacturer:
LT
Quantity:
10 000
Part Number:
ltc3586EUFE-1#PBF
Manufacturer:
MAXIM
Quantity:
56
Part Number:
ltc3586EUFE-1#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
ltc3586EUFE-2
Manufacturer:
LT
Quantity:
10 000
Part Number:
ltc3586EUFE-2#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
ltc3586EUFE-3
Manufacturer:
LT
Quantity:
10 000
Part Number:
ltc3586EUFE-3
Manufacturer:
LINEAR/凌特
Quantity:
20 000
OPERATION
Once the battery voltage is above 2.85V, the battery charger
begins charging in full power constant-current mode. The
current delivered to the battery will try to reach 1022V/
R
load conditions, the battery charger may or may not be
able to charge at the full programmed rate. The external
load will always be prioritized over the battery charge
current. The USB current limit programming will always
be observed and only additional power will be available to
charge the battery. When system loads are light, battery
charge current will be maximized.
Charge Termination
The battery charger has a built-in safety timer. When
the voltage on the battery reaches the pre-programmed
float voltage of 4.200V, the battery charger will regulate
the battery voltage and the charge current will decrease
naturally. Once the battery charger detects that the battery
has reached 4.200V, the four hour safety timer is started.
After the safety timer expires, charging of the battery will
discontinue and no more current will be delivered.
Automatic Recharge
After the battery charger terminates, it will remain off
drawing only microamperes of current from the battery.
If the portable product remains in this state long enough,
the battery will eventually self discharge. To ensure that
the battery is always topped off, a charge cycle will auto-
matically begin when the battery voltage falls below 4.1V.
In the event that the safety timer is running when the
battery voltage falls below 4.1V, it will reset back to zero.
To prevent brief excursions below 4.1V from resetting the
safety timer, the battery voltage must be below 4.1V for
more than 1.3ms. The charge cycle and safety timer will
also restart if the V
(e.g., V
PROG
. Depending on available input power and external
BUS
is removed and then replaced).
BUS
UVLO cycles low and then high
Charge Current
The charge current is programmed using a single resis-
tor from PROG to ground. 1/1022th of the battery charge
current is sent to PROG which will attempt to servo to
1.000V. Thus, the battery charge current will try to reach
1022 times the current in the PROG pin. The program
resistor and the charge current are calculated using the
following equations:
In either the constant-current or constant-voltage charging
modes, the voltage at the PROG pin will be proportional to
the actual charge current delivered to the battery. There-
fore, the actual charge current can be determined at any
time by monitoring the PROG pin voltage and using the
following equation:
In many cases, the actual battery charge current, I
be lower than I
prioritization with the system load drawn from V
Charge Status Indication
The CHRG pin indicates the status of the battery charger.
Four possible states are represented by CHRG which in-
clude charging, not charging, unresponsive battery, and
battery temperature out of range.
The signal at the CHRG pin can be easily recognized as
one of the above four states by either a human or a mi-
croprocessor. An open-drain output, the CHRG pin can
drive an indicator LED through a current limiting resistor
for human interfacing or simply a pull-up resistor for
microprocessor interfacing.
I
R
BAT
PROG
=
R
V
=
PROG
PROG
1022
I
CHG
CHG
• 1022
V
due to limited input power available and
,
I
CHG
=
1022
R
PROG
V
LTC3586
OUT
BAT
17
.
, will
3586f

Related parts for ltc3586