L6699D STMicroelectronics, L6699D Datasheet - Page 18

no-image

L6699D

Manufacturer Part Number
L6699D
Description
AC/DC Switching Converters Enhanced High Volt Res CTRL 600V
Manufacturer
STMicroelectronics
Type
High Voltage Controllersr
Datasheet

Specifications of L6699D

Product Category
AC/DC Switching Converters
Output Voltage
13.3 V
Input / Supply Voltage (max)
8.85 V
Input / Supply Voltage (min)
16 V
Switching Frequency
235 kHz
Supply Current
3 mA
Operating Temperature Range
- 25 C to + 125 C
Mounting Style
SMD/SMT
Package / Case
SO-16
Number Of Outputs
1
Output Current
800 mA

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
L6699D
Manufacturer:
STMicroelectronics
Quantity:
500
Part Number:
L6699D
Manufacturer:
ST
0
Part Number:
L6699D
Manufacturer:
ST
Quantity:
20 000
Part Number:
L6699DTR
Manufacturer:
SILICON
Quantity:
670
Part Number:
L6699DTR
Manufacturer:
ST
0
Part Number:
L6699DTR
Manufacturer:
ST
Quantity:
256
Part Number:
L6699DTR
Manufacturer:
ST
Quantity:
20 000
Part Number:
L6699DTR
0
Company:
Part Number:
L6699DTR
Quantity:
8 000
Part Number:
L6699DTR,
Manufacturer:
ST
0
Part Number:
L6699DTRG4
Manufacturer:
ST
0
Application information
18/38
Figure 10. Comparison startup behavior: traditional controller (left), with L6699
A non-zero initial voltage on the resonant capacitor may cause the very first turn-on of the
high-side MOSFET to occur with non-zero drain-to-source voltage while the body diode of
the low-side MOSFET is conducting, therefore invoking its reverse recovery. More hard-
switching cycles may follow (see the left-hand image in
potentially hazardous: they could cause the destruction of both MOSFETs, should the
resulting dv/dt across the low-side MOSFET exceed its maximum rating (see
Capacitive-mode detection function
To prevent this hard-switching cycle(s) with body diode reverse recovery, the L6699 waits
about 50
Figure 10
zero in case of an initially charged resonant capacitor. On the other hand, it is too short for
the bootstrap capacitor to be significantly discharged.
To understand the origin of transformer flux imbalance it is worth remembering that the half
bridge is driven with 50% duty cycle, so that under steady-state conditions the voltage
across the resonant capacitor Cr has a DC component equal to Vin/2. Consequently, the
transformer's primary winding is symmetrically driven by a ± Vin/2 square wave.
At startup, however, the voltage across Cr is often quite different from Vin/2, so it takes
some time for its DC component to reach the steady-state value Vin/2. During this transient,
the transformer is not driven symmetrically and, then, there is a significant V·s imbalance in
two consecutive half-cycles. If this imbalance is large, there is a significant difference in the
up and down slopes of the tank current and, the duration of the two half-cycles being the
same, the current may not reverse in a switching half-cycle, as shown in the left-hand image
in
is conducting and this may happen for a few cycles.
To prevent this, the L6699 is provided with a proprietary circuit that modifies the normal
operation of the oscillator during the initial switching cycles, so that the initial V·s unbalance
is nearly eliminated. Its operation is such that current reversal in every switching half-cycle
and, then, soft-switching is ensured.
Figure 11
µ
). This idle time is normally long enough to let the tank current decay to essentially
s after the pre-charge time before starting switching (see the right-hand image in
. Once again, one MOSFET can be turned on while the body diode of the other
(right)
Doc ID 022835 Rev 2
for more details).
Figure 10
). These events are few but
Section 9:
L6699

Related parts for L6699D