TC7135CPI Microchip Technology, TC7135CPI Datasheet - Page 13

IC ADC 4 1/2DGT 28-DIP

TC7135CPI

Manufacturer Part Number
TC7135CPI
Description
IC ADC 4 1/2DGT 28-DIP
Manufacturer
Microchip Technology
Datasheet

Specifications of TC7135CPI

Display Type
LED
Configuration
7 Segment
Interface
BCD
Digits Or Characters
A/D 4.5 Digits
Current - Supply
1mA
Voltage - Supply
4 V ~ 6 V
Operating Temperature
0°C ~ 70°C
Mounting Type
Through Hole
Package / Case
28-DIP (0.600", 15.24mm)
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
158-1133
158-1133
TC7135CPIR
TC7135CPIR

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
TC7135CPI
Manufacturer:
MICROCHIP
Quantity:
12 000
Part Number:
TC7135CPI
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
TABLE 6-2:
The conversion rate is easily calculated:
EQUATION 6-3:
6.3
The maximum conversion rate of most dual-slope A/D
converters is limited by the frequency response of the
comparator. The comparator in this circuit follows the
integrator ramp with a 3 µs delay, at a clock frequency
of 160 kHz (6 µs period). Half of the first reference inte-
grate clock period is lost in delay. This means that the
meter reading will change from 0 to 1 with a 50 µV
input, 1 to 2 with 150 µV, 2 to 3 at 250 µV, etc. This tran-
sition at midpoint is considered desirable by most
users. However, if the clock frequency is increased
appreciably above 200 kHz, the instrument will flash
"1" on noise peaks, even when the input is shorted.
For many dedicated applications where the input signal
is always of one polarity, the delay of the comparator
need not be a limitation. Since the nonlinearity and
noise do not increase substantially with frequency, clock
rates of up to ~1 MHz may be used. For a fixed clock
frequency, the extra count (or counts) caused by
comparator delay will be a constant and can be
subtracted out digitally.
The clock frequency may be extended above 160 kHz
without this error, however, by using a low value
resistor in series with the integrating capacitor. The
effect of the resistor is to introduce a small pedestal
voltage on to the integrator output at the beginning of
the reference integrate phase. By careful selection of
the ratio between this resistor and the integrating
© 2007 Microchip Technology Inc.
Oscillator Frequency
Reading 1/sec
166-2/3
High-Speed Operation
33-1/3
(kHz)
300
200
150
120
100
250
125
100
100
40
LINE FREQUENCY
REJECTION VS. CLOCK
FREQUENCY
=
Clock Frequency (Hz)
---------------------------------------------------- -
Line Frequency
4000
50, 60,400
Rejection
(Hz)
60
50
resistor (a few tens of ohms in the recommended
circuit), the comparator delay can be compensated and
the
approximately a factor of 3. At higher frequencies,
ringing and second-order breaks will cause significant
nonlinearities in the first few counts of the instrument.
The minimum clock frequency is established by
leakage on the auto-zero and reference capacitors.
With most devices, measurement cycles as long as 10
seconds give no measurable leakage error.
The clock used should be free from significant phase or
frequency jitter. Several suitable low-cost oscillators
are shown in Section 6.0 “Typical Applications”. The
multiplexed output means that if the display takes
significant current from the logic supply, the clock
should have good PSRR.
6.4
The flip flop interrogates the data once every clock
pulse after the transients of the previous clock pulse and
half clock pulse have died down. False zero crossings
caused by clock pulses are not recognized. Of course,
the flip flop delays the true zero crossing by up to one
count in every instance. If a correction were not made,
the display would always be one count too high.
Therefore, the counter is disabled for one clock pulse at
the beginning of the reference integrate (de-integrate)
phase. This one-count delay compensates for the delay
of the zero crossing flip flop and allows the correct
number to be latched into the display. Similarly, a one-
count delay at the beginning of auto-zero gives an
overload display of 0000 instead of 0001. No delay
occurs during signal integrate so that true ratiometric
readings result.
6.5
A negative voltage can be generated from the positive
supply by using a TC7135 (see
FIGURE 6-1:
Generator.
TC7135
24
maximum
Zero Crossing Flip Flop
Generating a Negative Supply
V+
V–
11
1
clock
10 µF
(-5V)
Negative Supply Voltage
+
frequency
5
Figure
4
TC7135
DS21460D-page 13
10 µF
TC7660
6-1).
extended
+5V
+
8
2
3
by

Related parts for TC7135CPI