IRFP048 Vishay, IRFP048 Datasheet

MOSFET N-CH 60V 70A TO-247AC

IRFP048

Manufacturer Part Number
IRFP048
Description
MOSFET N-CH 60V 70A TO-247AC
Manufacturer
Vishay
Datasheet

Specifications of IRFP048

Fet Type
MOSFET N-Channel, Metal Oxide
Fet Feature
Standard
Rds On (max) @ Id, Vgs
18 mOhm @ 44A, 10V
Drain To Source Voltage (vdss)
60V
Current - Continuous Drain (id) @ 25° C
70A
Vgs(th) (max) @ Id
4V @ 250µA
Gate Charge (qg) @ Vgs
110nC @ 10V
Input Capacitance (ciss) @ Vds
2400pF @ 25V
Power - Max
190W
Mounting Type
Through Hole
Package / Case
TO-247-3 (Straight Leads), TO-247AC
Configuration
Single
Transistor Polarity
N-Channel
Resistance Drain-source Rds (on)
0.018 Ohms
Drain-source Breakdown Voltage
60 V
Gate-source Breakdown Voltage
+/- 20 V
Continuous Drain Current
70 A
Power Dissipation
190 W
Maximum Operating Temperature
+ 175 C
Mounting Style
Through Hole
Minimum Operating Temperature
- 55 C
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
IRFP048
Manufacturer:
IR
Quantity:
12 875
Part Number:
IRFP048
Manufacturer:
IR
Quantity:
12 500
Part Number:
IRFP048N
Manufacturer:
IR
Quantity:
2 000
Part Number:
IRFP048N
Manufacturer:
IR
Quantity:
12 500
Part Number:
IRFP048NPBF
Manufacturer:
IR
Quantity:
30 000
Company:
Part Number:
IRFP048NPBF
Quantity:
16 240
Company:
Part Number:
IRFP048PBF
Quantity:
4 000
Company:
Part Number:
IRFP048PBF
Quantity:
15 000
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. V
c. I
d. 1.6 mm from case.
e. Current limited by the package (die current = 73 A).
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91198
S09-0009-Rev. A, 19-Jan-09
Soldering Recommendations (Peak Temperature)
PRODUCT SUMMARY
V
R
Q
Q
Q
Configuration
ORDERING INFORMATION
Package
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS T
PARAMETER
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current
Linear Derating Factor
Single Pulse Avalanche Energy
Maximum Power Dissipation
Peak Diode Recovery dV/dt
Operating Junction and Storage Temperature Range
Mounting Torque
DS
DS(on)
g
gs
gd
SD
DD
(Max.) (nC)
(nC)
(nC)
(V)
≤ 72 A, dI/dt ≤ 200 A/µs, V
= 25 V, starting T
(Ω)
TO-247
a
G
J
D
= 25 °C, L = 43 µH, R
e
S
c
DD
b
V
GS
≤ V
= 10 V
DS
G
, T
N-Channel MOSFET
J
Single
≤ 175 °C.
110
60
29
38
G
= 25 Ω, I
d
D
S
C
Power MOSFET
0.018
= 25 °C, unless otherwise noted
V
GS
AS
6-32 or M3 screw
at 10 V
= 73 A (see fig. 12).
T
for 10 s
C
= 25 °C
T
T
C
C
TO-247
IRFP048PbF
SiHFP048-E3
IRFP048
SiHFP048
= 100 °C
= 25 °C
FEATURES
• Dynamic dV/dt Rating
• Isolated Central Mounting Hole
• 175 °C Operating Temperature
• Ease of Paralleling
• Simple Drive Requirements
• Lead (Pb)-free Available
DESCRIPTION
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized
cost-effectiveness.
The TO-247 package is preferred for commercial-industrial
applications where higher power levels preclude the use of
TO-220 devices. The TO-247 is similar but superior to the
earlier TO-218 package because its isolated mounting hole.
It also provides greater creepage distances between pins to
meet the requirements of most safety specifications.
SYMBOL
T
dV/dt
J
V
V
E
I
P
, T
device
I
DM
DS
GS
AS
D
D
stg
IRFP048, SiHFP048
design,
- 55 to + 175
LIMIT
± 20
290
200
190
300
1.3
4.5
1.1
60
70
52
10
low
Vishay Siliconix
on-resistance
www.vishay.com
lbf · in
UNIT
W/°C
N · m
RoHS*
V/ns
COMPLIANT
mJ
°C
W
V
A
Available
and
1

Related parts for IRFP048

IRFP048 Summary of contents

Page 1

... TO-247 IRFP048PbF SiHFP048-E3 IRFP048 SiHFP048 = 25 °C, unless otherwise noted ° 100 ° ° for screw = 25 Ω (see fig. 12 ≤ 175 ° IRFP048, SiHFP048 Vishay Siliconix device design, low on-resistance SYMBOL LIMIT ± 290 DM 1.3 E 200 AS P 190 D dV/dt 4.5 ...

Page 2

... IRFP048, SiHFP048 Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER Maximum Junction-to-Ambient Case-to-Sink, Flat, Greased Surface Maximum Junction-to-Case (Drain) SPECIFICATIONS °C, unless otherwise noted J PARAMETER Static Drain-Source Breakdown Voltage V Temperature Coefficient DS Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance ...

Page 3

... TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted Fig Typical Output Characteristics, T Fig Typical Output Characteristics, T Document Number: 91198 S09-0009-Rev. A, 19-Jan- °C Fig Typical Transfer Characteristics C Fig Normalized On-Resistance vs. Temperature = 175 °C C IRFP048, SiHFP048 Vishay Siliconix www.vishay.com 3 ...

Page 4

... IRFP048, SiHFP048 Vishay Siliconix Fig Typical Capacitance vs. Drain-to-Source Voltage Fig Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 Fig Typical Source-Drain Diode Forward Voltage Fig Maximum Safe Operating Area Document Number: 91198 S09-0009-Rev. A, 19-Jan-09 ...

Page 5

... Fig Maximum Drain Current vs. Case Temperature Fig Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91198 S09-0009-Rev. A, 19-Jan-09 IRFP048, SiHFP048 Vishay Siliconix D.U. Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit d(on) r d(off) f Fig. 10b - Switching Time Waveforms www ...

Page 6

... IRFP048, SiHFP048 Vishay Siliconix Vary t to obtain p required I AS D.U. 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Charge Fig. 13a - Basic Gate Charge Waveform www.vishay.com Fig. 12c - Maximum Avalanche Energy vs. Drain Current Fig. 12b - Unclamped Inductive Waveforms Current regulator Same type as D.U.T. ...

Page 7

... SD • D.U.T. - device under test P.W. Period D = Period P.W. waveform SD Body diode forward current dI/dt waveform DS Diode recovery dV/dt Body diode forward drop Ripple ≤ for logic level and 3 V drive devices Fig For N-Channel IRFP048, SiHFP048 Vishay Siliconix + + www.vishay.com 7 ...

Page 8

... Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’ ...

Related keywords