PIC18F46J11-I/PT Microchip Technology, PIC18F46J11-I/PT Datasheet - Page 389

IC PIC MCU FLASH 64KB 44-TQFP

PIC18F46J11-I/PT

Manufacturer Part Number
PIC18F46J11-I/PT
Description
IC PIC MCU FLASH 64KB 44-TQFP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr
Datasheets

Specifications of PIC18F46J11-I/PT

Program Memory Type
FLASH
Program Memory Size
64KB (32K x 16)
Package / Case
44-TQFP, 44-VQFP
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
34
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2.15 V ~ 3.6 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3776 B
Interface Type
EUSART, I2C, SPI
Maximum Clock Frequency
48 MHz
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DV164136, DM183022
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 13 Channel
Package
44TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
Operating Supply Voltage
2.5|3.3 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164322 - MODULE SOCKET MPLAB PM3 28/44QFN
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F46J11-I/PT
Manufacturer:
MICROCHIP
Quantity:
3 000
Part Number:
PIC18F46J11-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F46J11-I/PT
0
25.0
PIC18F46J11 family devices include several features
intended to maximize reliability and minimize cost
through elimination of external components. These are:
• Oscillator Selection
• Resets:
• Interrupts
• Watchdog Timer (WDT)
• Fail-Safe Clock Monitor (FSCM)
• Two-Speed Start-up
• Code Protection
• In-Circuit Serial Programming (ICSP)
The oscillator can be configured for the application
depending on frequency, power, accuracy and cost. All
of the options are discussed in detail in Section 2.0
“Oscillator Configurations”.
A complete discussion of device Resets and interrupts
is available in previous sections of this data sheet. In
addition to their Power-up and Oscillator Start-up
Timers provided for Resets, the PIC18F46J11 family of
devices have a configurable Watchdog Timer (WDT),
which is controlled in software.
The inclusion of an internal RC oscillator also provides
the additional benefits of a Fail-Safe Clock Monitor
(FSCM) and Two-Speed Start-up. FSCM provides for
background monitoring of the peripheral clock and
automatic switchover in the event of its failure.
Two-Speed Start-up enables code to be executed
almost immediately on start-up, while the primary clock
source completes its start-up delays.
All of these features are enabled and configured by
setting the appropriate Configuration register bits.
25.1
The Configuration bits can be programmed to select
various device configurations. The configuration data is
stored in the last four words of Flash program memory;
Figure 5-1 depicts this. The configuration data gets
loaded into the volatile Configuration registers,
CONFIG1L through CONFIG4H, which are readable
and mapped to program memory starting at location
300000h.
Table 25-2 provides a complete list. A detailed explana-
tion of the various bit functions is provided in
Register 25-1 through Register 25-6.
© 2009 Microchip Technology Inc.
- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
SPECIAL FEATURES OF THE
CPU
Configuration Bits
PIC18F46J11 FAMILY
25.1.1
Unlike some previous PIC18 microcontrollers, devices
of the PIC18F46J11 family do not use persistent mem-
ory registers to store configuration information. The
Configuration
CONFIG4H, are implemented as volatile memory.
Immediately after power-up, or after a device Reset,
the microcontroller hardware automatically loads the
CONFIG1L through CONFIG4L registers with configu-
ration data stored in nonvolatile Flash program
memory. The last four words of Flash program memory,
known as the Flash Configuration Words (FCW), are
used to store the configuration data.
Table 25-1 provides the Flash program memory, which
will be loaded into the corresponding Configuration
register.
When creating applications for these devices, users
should always specifically allocate the location of the
FCW for configuration data. This is to make certain that
program code is not stored in this address when the
code is compiled.
The four Most Significant bits (MSb) of the FCW corre-
sponding to CONFIG1H, CONFIG2H, CONFIG3H and
CONFIG4H should always be programmed to ‘1111’.
This makes these FCWs appear to be NOP instructions
in the remote event that their locations are ever
executed by accident.
To prevent inadvertent configuration changes during
code
CONFIG1L through CONFIG4L, are loaded only once
per power-up or Reset cycle. User’s firmware can still
change the configuration by using self-reprogramming
to modify the contents of the FCW.
Modifying the FCW will not change the active contents
being used in the CONFIG1L through CONFIG4H
registers until after the device is reset.
execution,
CONSIDERATIONS FOR
CONFIGURING THE PIC18F46J11
FAMILY DEVICES
registers,
the
Configuration
CONFIG1L
DS39932C-page 389
registers,
through

Related parts for PIC18F46J11-I/PT