ATmega406 Atmel Corporation, ATmega406 Datasheet - Page 4

no-image

ATmega406

Manufacturer Part Number
ATmega406
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega406

Flash (kbytes)
40 Kbytes
Pin Count
48
Max. Operating Frequency
1 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
18
Ext Interrupts
4
Usb Speed
No
Usb Interface
No
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
12
Adc Speed (ksps)
1.9
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-30 to 85
I/o Supply Class
4.0 to 25
Operating Voltage (vcc)
4.0 to 25
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
3
Pwm Channels
2
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega406-1AAU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega406-1AAU
Manufacturer:
AT
Quantity:
20 000
The integrated cell balancing FETs allow cell balancing algorithms to be implemented in
software.
The MCU provides the following features: 40K bytes of In-System Programmable Flash with
Read-While-Write capabilities, 512 bytes EEPROM, 2K byte SRAM, 32 general purpose working
registers, 18 general purpose I/O lines, 11 high-voltage I/O lines, a JTAG Interface for On-chip
Debugging support and programming, two flexible Timer/Counters with PWM and compare
modes, one Wake-up Timer, an SM-Bus compliant TWI module, internal and external interrupts,
a 12-bit Sigma Delta ADC for voltage and temperature measurements, a high resolution Sigma
Delta ADC for Coulomb Counting and instantaneous current measurements, a programmable
Watchdog Timer with internal Oscillator, and four software selectable power saving modes.
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.
The Idle mode stops the CPU while allowing the other chip function to continue functioning. The
Power-down mode allows the voltage regulator, battery protection, regulator current detection,
Watchdog Timer, and Wake-up Timer to operate, while disabling all other chip functions until the
next Interrupt or Hardware Reset. In Power-save mode, the Wake-up Timer and Coulomb
Counter ADC continues to run.
The device is manufactured using Atmel’s high voltage high density non-volatile memory tech-
nology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System, by
a conventional non-volatile memory programmer or by an On-chip Boot program running on the
AVR core. The Boot program can use any interface to download the application program in the
Application Flash memory. Software in the Boot Flash section will continue to run while the
Application Flash section is updated, providing true Read-While-Write operation. By combining
an 8-bit RISC CPU with In-System Self-Programmable Flash, fuel gauging ADCs, dedicated bat-
tery protection circuitry, Cell Balancing FETs, and a voltage regulator on a monolithic chip, the
Atmel ATmega406 is a powerful microcontroller that provides a highly flexible and cost effective
solution for Li-ion Smart Battery applications.
The ATmega406 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and On-chip
Debugger.
ATmega406
4
2548ES–AVR–07/06

Related parts for ATmega406