AD8036-EB Analog Devices Inc, AD8036-EB Datasheet - Page 18

no-image

AD8036-EB

Manufacturer Part Number
AD8036-EB
Description
BOARD EVAL FOR AD8036
Manufacturer
Analog Devices Inc
Series
CLAMPIN™r
Datasheet

Specifications of AD8036-EB

Rohs Status
RoHS non-compliant
Channels Per Ic
1 - Single
Amplifier Type
Voltage Feedback
Output Type
Single-Ended
Slew Rate
1200 V/µs
-3db Bandwidth
240MHz
Current - Output / Channel
70mA
Operating Temperature
-40°C ~ 85°C
Current - Supply (main Ic)
20.5mA
Voltage - Supply, Single/dual (±)
±3 V ~ 6 V
Board Type
Fully Populated
Utilized Ic / Part
AD8036
AD8036/AD8037
Clamping with an Offset
Some op amp circuits are required to operate with an offset
voltage. These are generally configured in the inverting mode
where the offset voltage can be summed in as one of the inputs.
Since AD8036/AD8037 clamping does not function in the in-
verting mode, it is not possible to clamp with this configuration.
Figure 10 shows a noninverting configuration of an AD8037
that provides clamping and also has an offset. The circuit shows
the AD8037 as a driver for an AD9002, an 8-bit, 125 MSPS
A/D converter and illustrates some of the considerations for us-
ing an AD8037 with offset and clamping.
The analog input range of the AD9002 is from ground to –2 V.
The input should not go more than 0.5 V outside this range in
order to prevent disruptions to the internal workings of the A/D
and to avoid drawing excess current. These requirements make
the AD8037 a prime candidate for signal conditioning.
When an offset is added to a noninverting op amp circuit, it is
fed in through a resistor to the inverting input. The result is that
the op amp must now operate at a closed-loop gain greater than
unity. For this circuit a gain of two was chosen which allows the
use of the AD8037. The feedback resistor, R2, is set at 301 Ω
for optimum performance of the AD8037 at a gain of two.
There is an interaction between the offset and the gain, so some
calculations must be performed to arrive at the proper values for
R1 and R3. For a gain of two the parallel combination of resis-
tors R1 and R3 must be equal to the feedback resistor R2. Thus
The reference used to provide the offset is the AD780 whose
output is 2.5 V. This must be divided down to provide the 1 V
offset desired. Thus
When the two equations are solved simultaneously we get R1 =
499 Ω and R3 = 750 Ω (using closest 1% resistor values in all
cases). This positive 1 V offset at the input translates to a –1 V
offset at the output.
The usable input signal swing of the AD9002 is 2 V p-p. This is
centered about the –1 V offset making the usable signal range
from 0 V to –2 V. It is desirable to clamp the input signal so that
10µF
R1 × R3/R1 + R3 = R2 = 301 Ω
2.5 V × R1/(R1 + R3) = 1 V
0.1 F
AD780
+5V
2.5V
0.1 F
V
IN
–0.5V to +0.5V
499
750
R1
R3
49.9
0.1 F
100
806
100
–5V
+5V
806
100
0.1 F
AD8037
V
V
H
L
it goes no more than 100 mV outside of this range in either di-
rection. Thus, the high clamping level should be set at +0.1 V
and the low clamping level should be set at –2.1 V as seen at the
input of the AD9002 (output of AD8037).
Because the clamping is done at the input stage of the AD8037,
the clamping level as seen at the output is affected by not only
the gain of the circuit as previously described, but also by the
offset. Thus, in order to obtain the desired clamp levels, V
must be biased at +0.55 V while V
The clamping levels as seen at the output can be calculated by
the following:
Where V
The resistors used to generate the voltages for V
be kept to a minimum in order to reduce errors due to clamp
bias current. This current is dependent on V
59) and will create a voltage drop across whatever resistance is
in series with each clamp input. This extra error voltage is
multiplied by the closed-loop gain of the amplifier and can be
substantial, especially in high closed-loop gain configurations.
A 0.1 µF bypass capacitor should be placed between input
clamp pins V
The 1N5712 Schottky diode is used for protection from forward
biasing the substrate diode in the AD9002 during power-up
transients.
Programmable Pulse Generator
The AD8036/AD8037’s clamp output can be set accurately and
has a well controlled flat level. This along with wide bandwidth
and high slew rate make them very well suited for programmable
level pulse generators.
Figure 11 is a schematic for a pulse generator that can directly
accept TTL generated timing signals for its input and generate
pulses at the output up to 24 V p-p with 2500 V/µs slew rate.
The output levels can be programmed to anywhere in the range
–12 V to +12 V.
–5V
+5V
OFF
301
0.1 F
0.1 F
R2
–2V to 0V
is the offset voltage that appears at the output.
H
and V
10 F
10 F
L
V
V
and ground to ensure stable operation.
CH
CL
–2.1V to +0.1V
CLAMPING
1N5712
49.9
= V
= V
RANGE
OFF
OFF
0.1 F
+ G × V
+ G × V
L
must be biased at –0.55 V.
SUBSTRATE
V
IN
DIODE
AD9002
= –2V TO 0V
H
L
–5.2V
H
and V
H
and V
L
(see TPC
L
should
H

Related parts for AD8036-EB