PIC18F4455-I/PT Microchip Technology, PIC18F4455-I/PT Datasheet - Page 198

IC PIC MCU FLASH 12KX16 44TQFP

PIC18F4455-I/PT

Manufacturer Part Number
PIC18F4455-I/PT
Description
IC PIC MCU FLASH 12KX16 44TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4455-I/PT

Program Memory Type
FLASH
Program Memory Size
24KB (12K x 16)
Package / Case
44-TQFP, 44-VQFP
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
35
Eeprom Size
256 x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
24 KB
Interface Type
SPI, I2C, EAUSART
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
35
Number Of Timers
4
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM163025
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Package
44TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPI3-DB18F4550 - BOARD DAUGHTER ICEPIC3DM163025 - PIC DEM FULL SPEED USB DEMO BRDAC164305 - MODULE SKT FOR PM3 44TQFP444-1001 - DEMO BOARD FOR PICMICRO MCUAC164020 - MODULE SKT PROMATEII 44TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4455-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F4455-I/PT
Manufacturer:
MICROCH
Quantity:
20 000
PIC18F2455/2550/4455/4550
19.3.2
When initializing the SPI, several options need to be
specified. This is done by programming the appropriate
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).
These control bits allow the following to be specified:
• Master mode (SCK is the clock output)
• Slave mode (SCK is the clock input)
• Clock Polarity (Idle state of SCK)
• Data Input Sample Phase (middle or end of data
• Clock Edge (output data on rising/falling edge of
• Clock Rate (Master mode only)
• Slave Select mode (Slave mode only)
The MSSP module consists of a transmit/receive shift
register (SSPSR) and a buffer register (SSPBUF). The
SSPSR shifts the data in and out of the device, MSb
first. The SSPBUF holds the data that was written to the
SSPSR until the received data is ready. Once the eight
bits of data have been received, that byte is moved to
the SSPBUF register. Then, the Buffer Full detect bit,
BF (SSPSTAT<0>) and the interrupt flag bit, SSPIF, are
set. This double-buffering of the received data
(SSPBUF) allows the next byte to start reception before
EXAMPLE 19-1:
DS39632D-page 196
LOOP
output time)
SCK)
BTFSS
BRA
MOVF
MOVWF
MOVF
MOVWF
OPERATION
SSPSTAT, BF
LOOP
SSPBUF, W
RXDATA
TXDATA, W
SSPBUF
LOADING THE SSPBUF (SSPSR) REGISTER
;Has data been received (transmit complete)?
;No
;WREG reg = contents of SSPBUF
;Save in user RAM, if data is meaningful
;W reg = contents of TXDATA
;New data to xmit
Preliminary
reading the data that was just received. Any write to the
SSPBUF register during transmission/reception of data
will be ignored and the Write Collision detect bit, WCOL
(SSPCON1<7>), will be set. User software must clear
the WCOL bit so that it can be determined if the follow-
ing write(s) to the SSPBUF register completed
successfully.
When the application software is expecting to receive
valid data, the SSPBUF should be read before the next
byte of data to transfer is written to the SSPBUF. The
Buffer Full bit, BF (SSPSTAT<0>), indicates when
SSPBUF has been loaded with the received data
(transmission is complete). When the SSPBUF is read,
the BF bit is cleared. This data may be irrelevant if the
SPI is only a transmitter. Generally, the MSSP interrupt
is used to determine when the transmission/reception
has completed. If the interrupt method is not going to
be used, then software polling can be done to ensure
that a write collision does not occur. Example 19-1
shows the loading of the SSPBUF (SSPSR) for data
transmission.
The SSPSR is not directly readable or writable and can
only be accessed by addressing the SSPBUF register.
Additionally, the MSSP Status register (SSPSTAT)
indicates the various status conditions.
© 2007 Microchip Technology Inc.

Related parts for PIC18F4455-I/PT