ATMEGA16-16MU Atmel, ATMEGA16-16MU Datasheet - Page 43

IC AVR MCU 16K 16MHZ 5V 44-QFN

ATMEGA16-16MU

Manufacturer Part Number
ATMEGA16-16MU
Description
IC AVR MCU 16K 16MHZ 5V 44-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16-16MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-VQFN Exposed Pad
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Interface Type
JTAG/SPI/UART
Total Internal Ram Size
1KB
# I/os (max)
32
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
MLF
Processor Series
ATMEGA16x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
Package
44MLF
Family Name
ATmega
Maximum Speed
16 MHz
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600 - DEV KIT FOR AVR/AVR32770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Watchdog Timer
Control Register –
WDTCR
2466T–AVR–07/10
• Bits 7..5 – Res: Reserved Bits
These bits are reserved bits in the ATmega16 and will always read as zero.
• Bit 4 – WDTOE: Watchdog Turn-off Enable
This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure.
• Bit 3 – WDE: Watchdog Enable
When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE
bit has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:
1. In the same operation, write a logic one to WDTOE and WDE. A logic one must be writ-
2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0
The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods
are shown in
Table 17. Watchdog Timer Prescale Select
Bit
Read/Write
Initial Value
WDP2
0
0
0
0
1
1
1
1
ten to WDE even though it is set to one before the disable operation starts.
WDP1
0
0
1
1
0
0
1
1
Table
R
7
0
WDP0
17.
0
1
0
1
0
1
0
1
R
6
0
1,024K (1,048,576)
2,048K (2,097,152)
Oscillator Cycles
Number of WDT
128K (131,072)
256K (262,144)
512K (524,288)
16K (16,384)
32K (32,768)
64K (65,536)
R
5
0
WDTOE
R/W
4
0
WDE
R/W
3
0
Typical Time-out
at V
WDP2
17.1 ms
34.3 ms
68.5 ms
R/W
0.14 s
0.27 s
0.55 s
CC
1.1 s
2.2 s
2
0
= 3.0V
WDP1
R/W
1
0
Typical Time-out
ATmega16(L)
WDP0
at V
R/W
0
0
16.3 ms
32.5 ms
65 ms
0.13 s
0.26 s
0.52 s
CC
1.0 s
2.1 s
= 5.0V
WDTCR
43

Related parts for ATMEGA16-16MU