PIC16F84-10I/P Microchip Technology, PIC16F84-10I/P Datasheet - Page 185

IC MCU FLASH 1KX14 EE 18DIP

PIC16F84-10I/P

Manufacturer Part Number
PIC16F84-10I/P
Description
IC MCU FLASH 1KX14 EE 18DIP
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F84-10I/P

Core Size
8-Bit
Program Memory Size
1.75KB (1K x 14)
Core Processor
PIC
Speed
10MHz
Peripherals
POR, WDT
Number Of I /o
13
Program Memory Type
FLASH
Eeprom Size
64 x 8
Ram Size
68 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 6 V
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
18-DIP (0.300", 7.62mm)
Controller Family/series
PIC16F
No. Of I/o's
13
Eeprom Memory Size
64Byte
Ram Memory Size
68Byte
Cpu Speed
10MHz
No. Of Timers
1
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
68 B
Maximum Clock Frequency
10 MHz
Number Of Programmable I/os
13
Number Of Timers
1
Operating Supply Voltage
2 V to 6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
ICE2000
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DVA16XP180 - ADAPTER DEVICE FOR MPLAB-ICEAC164010 - MODULE SKT PROMATEII DIP/SOIC
Data Converters
-
Connectivity
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F84-10I/P
Quantity:
5
Part Number:
PIC16F84-10I/P
Quantity:
6
12.5
12.5.1
12.5.2
1997 Microchip Technology Inc.
External Clock Input Timing with Unsynchronized Clock
Reading and Writing Timer1 in Asynchronous Counter Mode
Timer1 Operation in Asynchronous Counter Mode
If T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues
to increment asynchronously to the internal phase clocks. The timer will continue to run during
SLEEP and can generate an interrupt on overflow which will wake-up the processor. However,
special precautions in software are needed to read/write the timer (Subsection
and Writing Timer1 in Asynchronous Counter
sleep, Timer1 can be used to implement a true real-time clock.
In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare
operations.
If the T1SYNC control bit is set, the timer will increment completely asynchronously. The input
clock must meet certain minimum high time and low time requirements. Refer to the Device Data
Sheet Electrical Specifications Section, timing
Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock, will
guarantee a valid read (taken care of in hardware). However, the user should keep in mind that
reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may
overflow between the reads.
For writes, it is recommended that the user simply stop the timer and write the desired values. A
write contention may occur by writing to the timer registers while the register is incrementing. This
may produce an unpredictable value in the timer register.
Reading the 16-bit value requires some care, since two separate reads are required to read the
entire 16-bits.
register.
Example 12-1:
04FFh
0500h
0501h
0502h
TMR1
Example 12-1
Reading 16-bit Register Issues
READ TMR1L
Store in TMPL
READ TMR1H
Store in TMPH
Action
shows why this may not be a straight forward read of the 16-bit
Sequence 1
TMPH:TMPL
05FFh
xxFFh
xxFFh
xxxxh
Section 12. Timer1
parameters
Mode”). Since the counter can operate in
45, 46, and 47.
READ TMR1H
Store in TMPH
READ TMR1L
Store in TMPL
Action
Sequence 2
DS31012A-page 12-5
12.5.2 “Reading
TMPH:TMPL
0401h
04xxh
04xxh
xxxxh
12

Related parts for PIC16F84-10I/P