EP9301-CQZ Cirrus Logic Inc, EP9301-CQZ Datasheet - Page 33

IC ARM9 SOC PROCESSOR 208LQFP

EP9301-CQZ

Manufacturer Part Number
EP9301-CQZ
Description
IC ARM9 SOC PROCESSOR 208LQFP
Manufacturer
Cirrus Logic Inc
Series
EP9r
Datasheets

Specifications of EP9301-CQZ

Core Size
16/32-Bit
Peripherals
AC'97, DMA, I&sup2:S, LED, MaverickKey, POR, PWM, WDT
Core Processor
ARM9
Speed
166MHz
Connectivity
EBI/EMI, Ethernet, I²C, IrDA, SPI, UART/USART, USB
Number Of I /o
19
Program Memory Type
ROMless
Ram Size
32K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 3.6 V
Data Converters
A/D 5x12b
Oscillator Type
External
Operating Temperature
0°C ~ 70°C
Package / Case
208-TQFP, 208-VQFP
Controller Family/series
(ARM9)
No. Of I/o's
19
Ram Memory Size
16MB
Cpu Speed
166MHz
No. Of Timers
4
Digital Ic Case Style
TQFP
Embedded Interface Type
SPI
Rohs Compliant
Yes
Processor Series
EP93xx
Core
ARM920T
Data Bus Width
32 bit
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Lead Free Status / Rohs Status
 Details
Other names
598-1136

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP9301-CQZ
Manufacturer:
CIRRUS
Quantity:
3 390
Part Number:
EP9301-CQZ
Quantity:
1
Part Number:
EP9301-CQZ
Manufacturer:
Cirrus Logic Inc
Quantity:
10 000
Part Number:
EP9301-CQZ
Manufacturer:
CIRRUSLOGIC
Quantity:
20 000
Part Number:
EP9301-CQZR
Manufacturer:
Cirrus Logic Inc
Quantity:
10 000
ADC
Using the ADC:
This ADC has a state-machine based conversion engine that automates the conversion process. The initiator for a
conversion is the read access of the TSXYResult register by the CPU. The data returned from reading this register
contains the result as well as the status bit indicating the state of the ADC. However, this peripheral requires a delay
between each successful conversion and the issue of the next conversion command, or else the returned value of
successive samples may not reflect the analog input. Since the state of the ADC state machine is returned through the
same channel used to initiate the conversion process, there must be a delay inserted after every complete conversion.
Note that reading TSXYResult during a conversion will not affect the result of the ongoing process.
The following is a recommended procedure for safely polling the ADC from software:
Resolution
Integral non-linearity
Offset error
Full scale error
Maximum sample rate
Channel switch settling time
Noise (RMS) - typical
DS636F2
Note:
1. Read the TSXYResult register into a local variable to initiate a conversion.
2. If the value of bit 31 of the local variable is '0' then repeat step 1.
3. Delay long enough to meet the maximum sample rate as shown above.
4. Mask the local variable with 0xFFFF to remove extraneous data.
5. If signed mode is used, do a sign extend of the lower halfword.
6. Return the sampled value.
ADIV refers to bit 16 in the KeyTchClkDiv register.
ADIV = 0 means the input clock to the ADC module is equal to the external 14.7456 MHz clock divided by 4.
ADIV = 1 means the input clock to the ADC module is equal to the external 14.7456 MHz clock divided by 16.
Parameter
Copyright 2010 Cirrus Logic (All Rights Reserved)
FFFF
9E58
61A8
0000
Figure 21. ADC Transfer Function
0
Range of 0 to 3.3 V
A/D Converter Transfer Function
No missing codes
(approximately ±25,000 counts)
Comment
ADIV = 0
ADIV = 1
ADIV = 0
ADIV = 1
Vref/2
50K counts (approximate)
Entry Level ARM9 System-on-Chip Processor
Vref
Value
0.01%
0.2%
3750
±15
925
500
120
2
Samples per second
Samples per second
Units
mV
ms
μV
μs
EP9301
33

Related parts for EP9301-CQZ