ST72F325K4T6 STMicroelectronics, ST72F325K4T6 Datasheet - Page 121

MCU 8BIT 16KB FLASH/ROM 32-LQFP

ST72F325K4T6

Manufacturer Part Number
ST72F325K4T6
Description
MCU 8BIT 16KB FLASH/ROM 32-LQFP
Manufacturer
STMicroelectronics
Series
ST7r
Datasheet

Specifications of ST72F325K4T6

Core Processor
ST7
Core Size
8-Bit
Speed
8MHz
Connectivity
I²C, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
24
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
3.8 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-LQFP
Processor Series
ST72F3x
Core
ST7
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
I2C, SCI, SPI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
48
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
ST7232X-EVAL, ST7232X-SK/RAIS, ST72325-D/RAIS, ST7MDT20-DVP3, ST7MDT20J-EMU3, ST7MDT20M-EMU3, STX-RLINK
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 16 Channel
For Use With
497-5046 - KIT TOOL FOR ST7/UPSD/STR7 MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
497-5605

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ST72F325K4T6
Manufacturer:
ST
Quantity:
151
Part Number:
ST72F325K4T6
Manufacturer:
STMicroelectronics
Quantity:
10 000
Part Number:
ST72F325K4T6
Manufacturer:
ST
0
Part Number:
ST72F325K4T6
Manufacturer:
ST
Quantity:
20 000
Part Number:
ST72F325K4T6TR
Manufacturer:
STMicroelectronics
Quantity:
10 000
Part Number:
ST72F325K4T6TR
Manufacturer:
ST
0
I
10.7.4 Functional Description
Refer to the CR, SR1 and SR2 registers in
10.7.7. for the bit definitions.
By default the I
mode (M/SL bit is cleared) except when it initiates
a transmit or receive sequence.
First the interface frequency must be configured
using the FRi bits in the OAR2 register.
10.7.4.1 Slave Mode
As soon as a start condition is detected, the
address is received from the SDA line and sent to
the shift register; then it is compared with the
address of the interface or the General Call
address (if selected by software).
Note: In 10-bit addressing mode, the comparison
includes the header sequence (11110xx0) and the
two most significant bits of the address.
Header matched (10-bit mode only): the interface
generates an acknowledge pulse if the ACK bit is
set.
Address not matched: the interface ignores it
and waits for another Start condition.
Address matched: the interface generates in se-
quence:
– Acknowledge pulse if the ACK bit is set.
– EVF and ADSL bits are set with an interrupt if the
Then the interface waits for a read of the SR1 reg-
ister, holding the SCL line low (see
Transfer sequencing EV1).
Next, in 7-bit mode read the DR register to deter-
mine from the least significant bit (Data Direction
Bit) if the slave must enter Receiver or Transmitter
mode.
In 10-bit mode, after receiving the address se-
quence the slave is always in receive mode. It will
enter transmit mode on receiving a repeated Start
condition followed by the header sequence with
matching address bits and the least significant bit
set (11110xx1).
Slave Receiver
Following the address reception and after SR1
register has been read, the slave receives bytes
from the SDA line into the DR register via the inter-
nal shift register. After each byte the interface gen-
erates in sequence:
– Acknowledge pulse if the ACK bit is set
– EVF and BTF bits are set with an interrupt if the
2
C BUS INTERFACE (Cont’d)
ITE bit is set.
ITE bit is set.
2
C interface operates in Slave
Figure 69
Section
Then the interface waits for a read of the SR1 reg-
ister followed by a read of the DR register, holding
the SCL line low (see
quencing EV2).
Slave Transmitter
Following the address reception and after SR1
register has been read, the slave sends bytes from
the DR register to the SDA line via the internal shift
register.
The slave waits for a read of the SR1 register fol-
lowed by a write in the DR register, holding the
SCL line low (see
EV3).
When the acknowledge pulse is received:
– The EVF and BTF bits are set by hardware with
Closing slave communication
After the last data byte is transferred a Stop Con-
dition is generated by the master. The interface
detects this condition and sets:
– EVF and STOPF bits with an interrupt if the ITE
Then the interface waits for a read of the SR2 reg-
ister (see
Error Cases
– BERR: Detection of a Stop or a Start condition
– AF: Detection of a non-acknowledge bit. In this
Note: In case of errors, SCL line is not held low;
however, the SDA line can remain low if the last
bits transmitted are all 0. While AF=1, the SCL line
may be held low due to SB or BTF flags that are
set at the same time. It is then necessary to re-
lease both lines by software.
an interrupt if the ITE bit is set.
bit is set.
during a byte transfer. In this case, the EVF and
the BERR bits are set with an interrupt if the ITE
bit is set.
If it is a Stop then the interface discards the data,
released the lines and waits for another Start
condition.
If it is a Start then the interface discards the data
and waits for the next slave address on the bus.
case, the EVF and AF bits are set with an inter-
rupt if the ITE bit is set.
The AF bit is cleared by reading the I2CSR2 reg-
ister. However, if read before the completion of
the transmission, the AF flag will be set again,
thus possibly generating a new interrupt. Soft-
ware must ensure either that the SCL line is back
at 0 before reading the SR2 register, or be able
to correctly handle a second interrupt during the
9th pulse of a transmitted byte.
Figure 69
Figure 69
Transfer sequencing EV4).
Figure 69
Transfer sequencing
ST72325xx
Transfer se-
121/197

Related parts for ST72F325K4T6