PIC16F887-E/P Microchip Technology, PIC16F887-E/P Datasheet - Page 79

IC PIC MCU FLASH 8KX14 40DIP

PIC16F887-E/P

Manufacturer Part Number
PIC16F887-E/P
Description
IC PIC MCU FLASH 8KX14 40DIP
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F887-E/P

Core Size
8-Bit
Program Memory Size
14KB (8K x 14)
Mfg Application Notes
Intro to Capacitive Sensing Appl Notes Layout and Physical Design Appl Note
Core Processor
PIC
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 14x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC16F
No. Of I/o's
35
Eeprom Memory Size
256Byte
Ram Memory Size
368Byte
Cpu Speed
20MHz
No. Of Timers
3
Package
40PDIP
Device Core
PIC
Family Name
PIC16
Maximum Speed
20 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
35
Interface Type
I2C/SPI/USART
On-chip Adc
14-chx10-bit
Number Of Timers
3
Processor Series
PIC16F
Core
PIC
Data Ram Size
368 B
Maximum Clock Frequency
20 MHz
Maximum Operating Temperature
+ 125 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 53273-916
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DM164123, DM164120-3, DV164122
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DVA18XP400 - DEVICE ADAPTER 18F4220 PDIP 40LD
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F887-E/P
Manufacturer:
TI
Quantity:
12 000
Part Number:
PIC16F887-E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
6.2.1
When the internal clock source is selected the
TMR1H:TMR1L register pair will increment on multiples
of F
6.2.2
When the external clock source is selected, the Timer1
module may work as a timer or a counter.
When counting, Timer1 is incremented on the rising
edge of the external clock input T1CKI. In addition, the
Counter mode clock can be synchronized to the
microcontroller system clock or run asynchronously.
If an external clock oscillator is needed (and the
microcontroller is using the INTOSC without CLKOUT),
Timer1 can use the LP oscillator as a clock source.
In Counter mode, a falling edge must be registered by
the counter prior to the first incrementing rising edge
after one or more of the following conditions (see
Figure 6-2):
• Timer1 is enabled after POR or BOR Reset
• A write to TMR1H or TMR1L
• T1CKI is high when Timer1 is disabled and when
6.3
Timer1 has four prescaler options allowing 1, 2, 4 or 8
divisions of the clock input. The T1CKPS bits of the
T1CON register control the prescale counter. The
prescale counter is not directly readable or writable;
however, the prescaler counter is cleared upon a write to
TMR1H or TMR1L.
6.4
A low-power 32.768 kHz oscillator is built-in between
pins T1OSI (input) and T1OSO (amplifier output). The
oscillator is enabled by setting the T1OSCEN control
bit of the T1CON register. The oscillator will continue to
run during Sleep.
The Timer1 oscillator is identical to the LP oscillator.
The user must provide a software time delay to ensure
proper oscillator start-up.
TRISC0 and TRISC1 bits are set when the Timer1
oscillator is enabled. RC0 and RC1 bits read as ‘0’ and
TRISC0 and TRISC1 bits read as ‘1’.
© 2009 Microchip Technology Inc.
Timer1 is reenabled T1CKI is low.
Note:
OSC
as determined by the Timer1 prescaler.
Timer1 Oscillator
Timer1 Prescaler
INTERNAL CLOCK SOURCE
EXTERNAL CLOCK SOURCE
The oscillator requires a start-up and
stabilization time before use. Thus,
T1OSCEN should be set and a suitable
delay observed prior to enabling Timer1.
PIC16F882/883/884/886/887
6.5
If control bit T1SYNC of the T1CON register is set, the
external clock input is not synchronized. The timer
continues to increment asynchronous to the internal
phase clocks. The timer will continue to run during
Sleep and can generate an interrupt on overflow,
which will wake-up the processor. However, special
precautions in software are needed to read/write the
timer (see Section 6.5.1 “Reading and Writing
Timer1 in Asynchronous Counter Mode”).
6.5.1
Reading TMR1H or TMR1L while the timer is running
from an external asynchronous clock will ensure a valid
read (taken care of in hardware). However, the user
should keep in mind that reading the 16-bit timer in two
8-bit values itself, poses certain problems, since the
timer may overflow between the reads.
For writes, it is recommended that the user simply stop
the timer and write the desired values. A write
contention may occur by writing to the timer registers,
while the register is incrementing. This may produce an
unpredictable value in the TMR1H:TTMR1L register
pair.
6.6
Timer1 gate source is software configurable to be the
T1G pin or the output of Comparator C2. This allows the
device to directly time external events using T1G or
analog events using Comparator C2. See the
CM2CON1 register (Register 8-3) for selecting the
Timer1 gate source. This feature can simplify the
software for a Delta-Sigma A/D converter and many
other applications. For more information on Delta-Sigma
A/D
(www.microchip.com).
Timer1 gate can be inverted using the T1GINV bit of
the T1CON register, whether it originates from the T1G
pin or Comparator C2 output. This configures Timer1 to
measure either the active-high or active-low time
between events.
Note:
Note:
converters,
Timer1 Operation in
Asynchronous Counter Mode
Timer1 Gate
When switching from synchronous to
asynchronous operation, it is possible to
skip an increment. When switching from
asynchronous to synchronous operation,
it is possible to produce a single spurious
increment.
READING AND WRITING TIMER1 IN
ASYNCHRONOUS COUNTER
MODE
TMR1GE bit of the T1CON register must be
set to use the Timer1 gate.
see
the
Microchip
DS41291F-page 77
web
site

Related parts for PIC16F887-E/P