ATMEGA645-16MU Atmel, ATMEGA645-16MU Datasheet - Page 48

IC AVR MCU FLASH 64K 64-QFN

ATMEGA645-16MU

Manufacturer Part Number
ATMEGA645-16MU
Description
IC AVR MCU FLASH 64K 64-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA645-16MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-MLF®, 64-QFN
Processor Series
ATMEGA64x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
SPI, UART, USI
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
64MLF EP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA645-16MU
Manufacturer:
ATECH
Quantity:
729
Part Number:
ATMEGA645-16MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
10.10.2
2570M–AVR–04/11
WDTCR – Watchdog Timer Control Register
To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.
• Bits 7:5 – Reserved Bits
These bits are reserved bits in the Atmel ATmega325/3250/645/6450 and will always read as
zero.
• Bit 4 – WDCE: Watchdog Change Enable
This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure. This bit must also be set when
changing the prescaler bits.
Watchdog Timer” on page 46.
• Bit 3 – WDE: Watchdog Enable
When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:
1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm
described above.
Timer” on page 46.
• Bits 2:0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0
The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Time-out Periods
are shown in
Bit
(0x60)
Read/Write
Initial Value
to WDE even though it is set to one before the disable operation starts.
Table 10-2 on page
R
7
0
See “Timed Sequences for Changing the Configuration of the Watchdog
R
6
0
See “Timed Sequences for Changing the Configuration of the
R
5
0
46.
WDCE
R/W
4
0
ATmega325/3250/645/6450
WDE
R/W
3
0
WDP2
R/W
2
0
WDP1
R/W
1
0
WDP0
R/W
0
0
WDTCR
48

Related parts for ATMEGA645-16MU