SAK-XE164KM-48F80L AA Infineon Technologies, SAK-XE164KM-48F80L AA Datasheet

no-image

SAK-XE164KM-48F80L AA

Manufacturer Part Number
SAK-XE164KM-48F80L AA
Description
IC MCU 16BIT FLASH 100-LQFP
Manufacturer
Infineon Technologies
Series
XE16xr
Datasheet

Specifications of SAK-XE164KM-48F80L AA

Core Processor
C166SV2
Core Size
16-Bit
Speed
80MHz
Connectivity
EBI/EMI, I²C, LIN, SPI, SSC, UART/USART, USI
Peripherals
I²S, POR, PWM, WDT
Number Of I /o
76
Program Memory Size
384KB (384K x 8)
Program Memory Type
FLASH
Ram Size
34K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
100-LFQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Other names
SP000628628
16-Bit
Architecture
XE164FM, XE164GM,
XE164HM, XE164KM
16-Bit Single-Chip
Real Time Signal Controller
XE166 Family Derivatives / Base Line
Data Sheet
V2.0 2009-03
M ic r o co n t ro l l e r s

Related parts for SAK-XE164KM-48F80L AA

SAK-XE164KM-48F80L AA Summary of contents

Page 1

Architecture XE164FM, XE164GM, XE164HM, XE164KM 16-Bit Single-Chip Real Time Signal Controller XE166 Family Derivatives / Base Line Data Sheet V2.0 2009- ...

Page 2

... Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life ...

Page 3

Architecture XE164FM, XE164GM, XE164HM, XE164KM 16-Bit Single-Chip Real Time Signal Controller XE166 Family Derivatives / Base Line Data Sheet V2.0 2009- ...

Page 4

... V1.2, 2008-09 V1.1, 2008-06 Preliminary V1.0, 2008-06 (Intermediate version) Page Subjects (major changes since last revision) 10f Product types added for operation up to 125°C (SAK-XE164xM-....) RAM size of -24F types increased from 18ff Overlaid analog input channels specified (ADC0/ADC1) 83, 85 Current through power domain DMP_A specified ...

Page 5

Table of Contents 1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

Page 6

Debug Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

Page 7

Single-Chip Real Time Signal Controller XE164xM (XE166 Family) 1 Summary of Features For a quick overview and easy reference, the features of the XE164xM are summarized here. • High-performance CPU with five-stage pipeline and MPU – 12.5 ns instruction ...

Page 8

Up to three capture/compare units for flexible PWM signal generation (CCU6x) – Two Synchronizable A/D Converters with channels, 10-bit resolution, conversion time below 1 μs, optional data preprocessing (data ...

Page 9

... SAF-…: -40°C to 85°C – SAK-…: -40°C to 125°C • the package and the type of delivery. For ordering codes for the XE164xM please contact your sales representative or local distributor ...

Page 10

... SAK-XE164GM- 576 Kbytes 72FxxL Flash SAF-XE164GM- 576 Kbytes 72FxxL Flash SAK-XE164GM- 384 Kbytes 48FxxL Flash SAF-XE164GM- 384 Kbytes 48FxxL Flash SAK-XE164GM- 192 Kbytes 24FxxL Flash SAF-XE164GM- 192 Kbytes 24FxxL Flash SAK-XE164HM- 576 Kbytes 72FxxL Flash SAF-XE164HM- 576 Kbytes 72FxxL Flash SAK-XE164HM- ...

Page 11

... Flash SAK-XE164KM- 384 Kbytes 48FxxL Flash SAF-XE164KM- 384 Kbytes 48FxxL Flash SAK-XE164KM- 192 Kbytes 24FxxL Flash SAF-XE164KM- 192 Kbytes 24FxxL Flash 1) This Data Sheet is valid for devices starting with and including design step AA placeholder for the available speed grade (in MHz). ...

Page 12

The XE164xM types are offered with several Flash memory sizes. location of the available memory areas for each Flash memory size. Table 2 Flash Memory Allocation Total Flash Size 576 Kbytes 384 Kbytes 192 Kbytes 1) The uppermost 4-Kbyte sector ...

Page 13

General Device Information The XE164xM series (16-Bit Single-Chip Real Time Signal Controller part of the Infineon XE166 Family of full-feature single- chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms ...

Page 14

Pin Configuration and Definition The pins of the XE164xM are described in detail in functions. For further explanations please refer to the footnotes at the end of the table. Figure 2 summarizes all pins, showing their locations on the ...

Page 15

Key to Pin Definitions • Ctrl.: The output signal for a port pin is selected by bitfield PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bitfield PC to 1x00 , output O1 is selected ...

Page 16

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl St/B EMUX1 O1 U0C1_DOUT O2 U0C0_DOUT O3 CCU62_CCP I OS1A TMS_C I U0C1_DX0F St/B EXTCLK O1 CCU62_CTR I APA ...

Page 17

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl St/A EMUX1 O1 T3OUT O2 U1C1_DOUT O3 ADCx_REQT I RyE RxDC2E I ESR1_6 St/A EMUX2 O1 T6OUT O2 U1C1_SCLK ...

Page 18

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 22 P5.0 I ADC0_CH0 I 23 P5.2 I ADC0_CH2 I TDI_A I 24 P5.3 I ADC0_CH3 I T3INA I 28 P5.4 I ADC0_CH4 I T3EUDA I TMS_A I 29 P5.5 ...

Page 19

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 32 P5.10 I ADC0_CH10 I ADC1_CH10 I BRKIN_A I U2C1_DX0F I CCU61_T13 I HRA 33 P5.11 I ADC0_CH11 I ADC1_CH11 I 34 P5.13 I ADC0_CH13 I 35 P5.15 I ADC0_CH15 ...

Page 20

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl St/B AD13 St/B RxDC0C I T5INB St/B TxDC0 O1 AD14 St/B T5EUDB I ...

Page 21

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl St/B TxDC2 O2 CC2_CC25 St/B CS1 OH CCU62_CCP I OS0B T4EUDB I ESR1_8 St/B U0C1_DOUT O1 ...

Page 22

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl St/B TxDC2 O2 CC2_CC26 St/B CS2 OH T2INA I CCU62_CCP I OS1B 48 P2 St/B U0C0_SELO O1 0 U0C1_SELO ...

Page 23

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl St/B U1C0_DOUT O1 CCU61_CC6 U1C0_DX0A I CCU61_CC6 I 0INA ESR1_11 St/B U0C1_SELO O1 0 U0C0_SELO ...

Page 24

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl DP/B Bit 8 of Port 2, General Purpose Input/Output U0C1_SCLK O1 OUT EXTCLK O2 CC2_CC21 DP/B CAPCOM2 CC21IO Capture Inp./ Compare Out. ...

Page 25

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 59 P10 St/B U0C1_DOUT O1 CCU60_CC6 O2 0 AD0 St/B CCU60_CC6 I 0INA ESR1_2 I U0C0_DX0A I U0C1_DX0A I 60 P10 ...

Page 26

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 62 P10 St/B U0C0_SCLK O1 OUT CCU60_CC6 O2 2 AD2 St/B CCU60_CC6 I 2INA U0C0_DX1B St/B U1C1_SELO O1 ...

Page 27

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 67 P10 St/B CCU60_COU O2 T60 AD3 St/B U0C0_DX2A I U0C1_DX2A St/B U1C1_SCLK O1 OUT U1C0_SELO O2 2 ...

Page 28

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 70 P10 St/B U0C1_SCLK O1 OUT CCU60_COU O2 T62 U2C0_DOUT O3 AD5 St/B U0C1_DX1B St/B U1C1_DOUT O1 TxDC1 ...

Page 29

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 73 P10 St/B U0C1_DOUT O1 CCU60_COU O2 T63 AD7 St/B U0C1_DX0B I CCU60_CCP I OS0A T4INB St/B U1C1_DOUT ...

Page 30

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 79 P10 St/B U0C0_MCLK O1 OUT U0C1_SELO O2 0 U2C1_DOUT O3 AD8 St/B CCU60_CCP I OS1A U0C0_DX1C I BRKIN_B I T3EUDB I 80 P10.9 ...

Page 31

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 82 P10. St/B U0C0_SELO O1 0 CCU60_COU O2 T63 AD10 St/B U0C0_DX2C I U0C1_DX1A I TDI_B I 83 P10. St/B U1C0_SCLK ...

Page 32

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 85 P10. St/B U1C0_DOUT O1 TxDC2 O2 TDO_B St/B AD12 St/B U1C0_DX0C I U1C0_DX1E I 86 P10. St/B ...

Page 33

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 89 P10. St/B U1C0_SELO O1 1 U0C1_DOUT ESR2_2 I U0C1_DX0C I RxDC3C St/B CCU62_COU O1 T61 U1C1_SELO O2 ...

Page 34

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl St/B CCU62_CC6 St/B 1 U1C1_SELO O2 2 U2C0_DOUT O3 A14 OH U2C0_DX0D I CCU62_CC6 I 1INA 94 P1 St/B ...

Page 35

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 97 PORST I 98 ESR1 St/B RxDC0E I U1C0_DX0F I U1C0_DX2C I U1C1_DX0C I U1C1_DX2B I U2C1_DX2C I 99 ESR0 St/B U1C0_DX0E I U1C0_DX2B ...

Page 36

Table 4 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl DDPB 25, 27, 50, 52, 75, 77, 100 26, 51 generate the reference clock output for bus timing measurement, EXTCLK ...

Page 37

Functional Description The architecture of the XE164xM combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, ...

Page 38

Memory Subsystem and Organization The memory space of the XE164xM is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same ...

Page 39

Table 5 XE164xM Memory Map (cont’d) Address Area Reserved MultiCAN/USIC regs. Reserved USIC registers MultiCAN registers External memory area SFR area Dual-Port RAM Reserved for DPRAM ESFR area XSFR area Data SRAM Reserved for DSRAM External memory area 1) The ...

Page 40

Kbytes of on-chip Stand-By SRAM (SBRAM) provide storage for system-relevant user data that must be preserved while the major part of the device is powered down. The SBRAM is accessed via a specific interface and is powered in domain ...

Page 41

External Bus Controller All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an ...

Page 42

Central Processing Unit (CPU) The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instruction- fetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three ...

Page 43

With this hardware most XE164xM instructions can be executed in a single machine cycle of 12.5 ns with an 80-MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits ...

Page 44

Memory Protection Unit (MPU) The XE164xM’s Memory Protection Unit (MPU) protects user-specified memory areas from unauthorized read, write, or instruction fetch accesses. The MPU can protect the whole address space including the peripheral area. This completes establisched mechanisms such ...

Page 45

Interrupt System With a minimum interrupt response time of 7/11 program execution), the XE164xM can react quickly to the occurrence of non- deterministic events. The architecture of the XE164xM supports several mechanisms for fast and flexible response to service ...

Page 46

Table 6 XE164xM Interrupt Nodes Source of Interrupt or PEC Service Request CAPCOM Register 16 CAPCOM Register 17 CAPCOM Register 18 CAPCOM Register 19 CAPCOM Register 20, or USIC0 Channel 0, Request 3 CAPCOM Register 21, or USIC0 Channel 1, ...

Page 47

Table 6 XE164xM Interrupt Nodes (cont’d) Source of Interrupt or PEC Service Request A/D Converter Request 0 A/D Converter Request 1 A/D Converter Request 2 A/D Converter Request 3 A/D Converter Request 4 A/D Converter Request 5 A/D Converter Request ...

Page 48

Table 6 XE164xM Interrupt Nodes (cont’d) Source of Interrupt or PEC Service Request CAN Request 6 CAN Request 7 CAN Request 8 CAN Request 9 CAN Request 10 CAN Request 11 CAN Request 12 CAN Request 13 CAN Request 14 ...

Page 49

Table 6 XE164xM Interrupt Nodes (cont’d) Source of Interrupt or PEC Service Request SCU External Request 0 SCU External Request 1 SCU External Request 2 SCU Request 1 SCU Request 0 SCU External Request 3 RTC End of PEC Subchannel ...

Page 50

The XE164xM includes an excellent mechanism to identify and process exceptions or error conditions that arise during run-time, the so-called ‘Hardware Traps’. A hardware trap causes an immediate non-maskable system reaction similar to a standard interrupt service (branching to a ...

Page 51

On-Chip Debug Support (OCDS) The On-Chip Debug Support system built into the XE164xM provides a broad range of debug and emulation features. User software running on the XE164xM can be debugged within the target system environment. The OCDS is ...

Page 52

Capture/Compare Unit (CAPCOM2) The CAPCOM2 unit supports generation and control of timing sequences channels with a maximum resolution of one system clock cycle (eight cycles in staggered mode). The CAPCOM2 unit is typically used to ...

Page 53

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched (‘captured’) into the capture/compare register in response to an external event at the port pin associated with this register. In ...

Page 54

Capture/Compare Units CCU6x The XE164xM types feature several CCU6 units (CCU60, CCU61, CCU62). The CCU6 is a high-resolution capture and compare unit with application-specific modes. It provides inputs to start the timers synchronously, an important feature in devices with ...

Page 55

SYS TxHR T12 Interrupts st art T13 Figure 6 Mod_Name Block Diagram Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. ...

Page 56

General Purpose Timer (GPT12E) Unit The GPT12E unit is a very flexible multifunctional timer/counter structure which can be used for many different timing tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or ...

Page 57

T3CON.BPS1 GPT T2IN T2 Mode Control T2EUD T3 T3IN Mode Control T3EUD T4IN T4 Mode Control T4EUD Figure 7 Block Diagram of GPT1 Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / Base Line Basic ...

Page 58

With its maximum resolution of 2 system clock cycles, the GPT2 module provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which ...

Page 59

T6CON.BPS2 GPT T5IN Mode T5EUD Control CAPIN CAPREL Mode Control T3IN/ T3EUD Mode T6IN Control T6EUD Figure 8 Block Diagram of GPT2 Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / Base Line Basic Clock ...

Page 60

Real Time Clock The Real Time Clock (RTC) module of the XE164xM can be clocked with a clock signal selected from internal sources or external sources (pins). The RTC basically consists of a chain of divider blocks: • Selectable ...

Page 61

The RTC module can be used for different purposes: • System clock to determine the current time and date • Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources • 48-bit timer for ...

Page 62

A/D Converters For analog signal measurement two 10-bit A/D converters (ADC0, ADC1) with multiplexed input channels and a sample and hold circuit have been integrated on-chip. 4 inputs can be converted by both A/D ...

Page 63

Universal Serial Interface Channel Modules (USIC) The XE164xM features several USIC modules (USIC0, USIC1, USIC2), each providing two serial communication channels. The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure ...

Page 64

Target Protocols Each USIC channel can receive and transmit data frames with a selectable data word width from bits in each of the following protocols: • UART (asynchronous serial channel) – module capability: maximum baud rate = ...

Page 65

MultiCAN Module The MultiCAN module contains independently operating CAN nodes with Full-CAN functionality which are able to exchange Data and Remote Frames using a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification ...

Page 66

MultiCAN Features • CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898) • Independent CAN nodes • Set of independent message objects (shared by the CAN nodes) • Dedicated control registers for ...

Page 67

Watchdog Timer The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time. The Watchdog Timer is always enabled after an application reset of the chip. ...

Page 68

Parallel Ports The XE164xM provides I/O lines which are organized into 7 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. ...

Page 69

Instruction Set Summary Table 10 lists the instructions of the XE164xM. The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction ...

Page 70

Table 10 Instruction Set Summary (cont’d) Mnemonic Description ROL/ROR Rotate left/right direct word GPR ASHR Arithmetic (sign bit) shift right direct word GPR MOV(B) Move word (byte) data MOVBS/Z Move byte operand to word op. with sign/zero extension JMPA/I/R Jump ...

Page 71

Table 10 Instruction Set Summary (cont’d) Mnemonic Description NOP Null operation CoMUL/CoMAC Multiply (and accumulate) CoADD/CoSUB Add/Subtract Co(A)SHR (Arithmetic) Shift right CoSHL Shift left CoLOAD/STORE Load accumulator/Store MAC register CoCMP Compare CoMAX/MIN Maximum/Minimum CoABS/CoRND Absolute value/Round accumulator CoMOV Data move ...

Page 72

Electrical Parameters The operating range for the XE164xM is defined by its electrical parameters. For proper operation the specified limits must be respected during system design 4.1 General Parameters These parameters are valid for all subsequent descriptions, unless otherwise ...

Page 73

Operating Conditions The following operating conditions must not be exceeded to ensure correct operation of the XE164xM. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed. Note: Typical parameter values refer to room temperature ...

Page 74

Table 12 Operating Condition Parameters (cont’d) Parameter Absolute sum of overload currents External Pin Load Capacitance Voltage Regulator Buffer Capacitance for DMP_M Voltage Regulator Buffer Capacitance for DMP_1 Operating frequency Ambient temperature 1) Performance of pad drivers, A/D Converter, and ...

Page 75

CC (Controller Characteristics): The logic of the XE164xM provides signals with the specified characteristics. SR (System Requirement): The external system must provide signals with the specified characteristics to the XE164xM. Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / ...

Page 76

DC Parameters These parameters are static or average values that may be exceeded during switching transitions (e.g. output current). The XE164xM can operate within a wide supply voltage range from 3 5.5 V. However, during operation this ...

Page 77

Pullup/Pulldown Device Behavior Most pins of the XE164xM feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application. The specified current values indicate how to load the ...

Page 78

DC Parameters for Upper Voltage Area These parameters apply to the upper IO voltage range, 4.5 V ≤ Note: Operating Conditions apply. Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal ...

Page 79

Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions. 2) The maximum deliverable ...

Page 80

DC Parameters for Lower Voltage Area These parameters apply to the lower IO voltage range, 3.0 V ≤ Note: Operating Conditions apply. Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal ...

Page 81

Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions. 2) The maximum deliverable ...

Page 82

Power Consumption The power consumed by the XE164xM depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components: • The switching current I • The ...

Page 83

A small current is consumed because the drivers’ input stages are switched. 2) Please consider the additional conditions described in section “Active Mode Power Supply ...

Page 84

I [mA] S 100 Figure 13 Supply Current in Active Mode as a Function of Frequency Note: Operating Conditions apply. Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / ...

Page 85

Table 16 Leakage Power Consumption XE164xM Parameter 2) Leakage supply current 3) : 600,000 × e -α Formula ; α = 5000 / (273 + B× Typ 1.0, Max 1.3 1) All inputs ...

Page 86

I [mA -50 Figure 14 Leakage Supply Current as a Function of Temperature Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / Base Line 0 50 100 86 Electrical Parameters I ...

Page 87

Analog/Digital Converter Parameters These parameters describe the conditions for optimum ADC performance. Note: Operating Conditions apply. Table 17 A/D Converter Characteristics Parameter Analog reference supply Analog reference ground Analog input voltage range Analog clock frequency Conversion time for 10-bit ...

Page 88

Table 17 A/D Converter Characteristics (cont’d) Parameter Total capacitance of an analog input Switched capacitance of an analog input Resistance of the analog input path Total capacitance of the reference input Switched capacitance of the reference input Resistance of the ...

Page 89

R Source V AIN Figure 15 Equivalent Circuitry for Analog Inputs Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / Base Line R AIN Ext AINT AINS 89 Electrical Parameters A/D Converter C AINS ...

Page 90

Sample time and conversion time of the XE164xM’s A/D converters are programmable. The timing above can be calculated using f The limit values for must not be exceeded when selecting the prescaler value. ADCI Table 18 A/D Converter Computation Table ...

Page 91

System Parameters The following parameters specify several aspects which are important when integrating the XE164xM into an application system. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 19 Various System Parameters ...

Page 92

Table 20 Coding of Bitfields LEVxV in Register SWDCON0 Code Default Voltage Level 0000 2 0001 3 0010 3 0011 3 0100 3 0101 3 0110 3.6 V ...

Page 93

Flash Memory Parameters The XE164xM is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XE164xM’s Flash memory (i.e. the time after which stored data can still be retrieved) depends on ...

Page 94

Access to the XE164xM Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access. Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software ...

Page 95

AC Parameters These parameters describe the dynamic behavior of the XE164xM. 4.6.1 Testing Waveforms These values are used for characterization and production testing (except pin XTAL1). Output delay Hold time 0.8 V DDP 0.7 V DDP 0.3 V DDP ...

Page 96

Definition of Internal Timing The internal operation of the XE164xM is controlled by the internal system clock Because the system clock signal external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as ...

Page 97

Direct Drive When direct drive operation is selected (SYSCON0.CLKSEL = 11 derived directly from the input clock signal CLKIN1 SYS IN f The frequency of is the same as the frequency of SYS f times of ...

Page 98

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances. The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly ...

Page 99

D Acc. jitter T ns ±9 ±8 ±7 ±6 ±5 ±4 ±3 ±2 ± Figure 19 Approximated Accumulated PLL Jitter Note: The specified PLL jitter values are valid if the capacitive load per pin does not C ...

Page 100

Wakeup Clock When wakeup operation is selected (SYSCON0.CLKSEL = 00 derived from the low-frequency wakeup clock source SYS WU In this mode, a basic functionality can be maintained without requiring an external clock source and while ...

Page 101

External Clock Input Parameters These parameters specify the external clock generation for the XE164xM. The clock can be generated in two ways: • By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2. • By supplying an external clock ...

Page 102

V OFF Figure 20 External Clock Drive XTAL1 Note: For crystal/resonator operation strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation. Please refer to ...

Page 103

Pad Properties The output pad drivers of the XE164xM can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad ...

Page 104

Table 27 Standard Pad Parameters (Lower Voltage Range) Parameter 1) Maximum output current Nominal output current Rise/Fall time (10%-90%) Valid for external capacitances in the range ≤ ≤ 100 [pF]) L ...

Page 105

External Bus Timing The following parameters specify the behavior of the XE164xM bus interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Table 28 CLKOUT Reference Signal Parameter CLKOUT cycle time CLKOUT ...

Page 106

Variable Memory Cycles External bus cycles of the XE164xM are executed in five consecutive cycle phases (AB F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to ...

Page 107

Table 30 External Bus Cycle Timing for Upper Voltage Range Parameter Output valid delay for: RD, WR(L/H) Output valid delay for: BHE, ALE Address output valid delay for: A23 … A16, A15 … A0 Address output valid delay for: AD15 ...

Page 108

Table 31 External Bus Cycle Timing for Lower Voltage Range Parameter Output valid delay for: RD, WR(L/H) Output valid delay for: BHE, ALE Address output valid delay for: A23 … A16, A15 … A0 Address output valid delay for: AD15 ...

Page 109

CLKOUT t 11 ALE A23-A16, BHE, CSx RD WR(L/H) t AD15-AD0 (read) t AD15-AD0 (write) Figure 22 Multiplexed Bus Cycle Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / Base Line ...

Page 110

AB CLKOUT t 11 ALE A23-A0, BHE, CSx RD WR(L/H) D15-D0 (read) D15-D0 (write) Figure 23 Demultiplexed Bus Cycle Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / Base Line ...

Page 111

Bus Cycle Control with the READY Input The duration of an external bus cycle can be controlled by the external circuit using the READY input signal. The polarity of this input signal can be selected. Synchronous READY permits the shortest ...

Page 112

CLKOUT RD, WR D15-D0 (read) D15-D0 (write) READY Synchronous READY Asynchron. Figure 24 READY Timing Note: If the READY input is sampled inactive at the indicated sampling point (“Not Rdy”) a READY-controlled waitstate is inserted (tpRDY), sampling the READY input ...

Page 113

Synchronous Serial Interface Timing The following parameters are applicable for a USIC channel operated in SSC mode. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 32 SSC ...

Page 114

Table 33 SSC Master/Slave Mode Timing for Lower Voltage Range Parameter Master Mode Timing Slave select output SELO active to first SCLKOUT transmit edge Slave select output SELO inactive after last SCLKOUT receive edge Transmit data output valid time Receive ...

Page 115

Master Mode Timing Select Output Inactive SELOx Clock Output SCLKOUT Data Output DOUT Data Input DX0 Slave Mode Timing Select Input Inactive DX2 Clock Input DX1 Data Input DX0 Data Output DOUT Transmit Edge: with this clock edge , transmit ...

Page 116

Debug Interface Timing The debugger can communicate with the XE164xM either via the 2-pin DAP interface or via the standard JTAG interface. Debug via JTAG The following parameters are applicable for communication through the JTAG debug interface. The JTAG ...

Page 117

Table 35 JTAG Interface Timing Parameters for Lower Voltage Range Parameter TCK clock period TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge ...

Page 118

TCK TMS TDI t 9 TDO Figure 27 JTAG Timing Data Sheet XE164FM, XE164GM, XE164HM, XE164KM XE166 Family Derivatives / Base Line 118 Electrical Parameters t 10 MC_JTAG ...

Page 119

Debug via DAP The following parameters are applicable for communication through the DAP debug interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 36 DAP Interface Timing Parameters ...

Page 120

Table 37 DAP Interface Timing Parameters for Lower Voltage Range Parameter DAP0 clock period DAP0 high time DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge DAP1 hold after DAP0 rising edge ...

Page 121

DAP0 DAP1 Figure 29 Data Transfer Timing Host to Device (DAP1) DAP1 Figure 30 Data Transfer Timing Device to Host (DAP1) Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram. Data Sheet ...

Page 122

Package and Reliability In addition to the electrical parameters, the following specifications ensure proper integration of the XE164xM into the target system. 5.1 Packaging These parameters specify the packaging rather than the silicon. Table 38 Package Parameters (PG-LQFP-100-8) Parameter ...

Page 123

Package Outlines 0.5 12 0.22 ±0.05 0. 100 1 Index Marking 1) Does not include plastic or metal protrusion of 0.25 max. per side Figure 31 PG-LQFP-100-8 (Plastic Green Thin Quad Flat Package) All dimensions ...

Page 124

Thermal Considerations When operating the XE164xM in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends ...

Page 125

... Published by Infineon Technologies AG B158-H9277-G3-X-7600 ...

Related keywords