ATMEGA64-16AI Atmel, ATMEGA64-16AI Datasheet - Page 245

IC AVR MCU 64K 16MHZ IND 64-TQFP

ATMEGA64-16AI

Manufacturer Part Number
ATMEGA64-16AI
Description
IC AVR MCU 64K 16MHZ IND 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA64-16AI

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64-16AI
Manufacturer:
Atmel
Quantity:
10 000
ADCSRA – ADC
Control and Status
Register A
2490Q–AVR–06/10
Table 98. Input Channel and Gain Selections (Continued)
• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.
• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.
ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.
• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.
• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the data registers are updated. The ADC
Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on
ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions
are used.
• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.
Bit
0x06 (0x26)
Read/Write
Initial Value
MUX4..0
11010
11011
11100
11101
11110
11111
Single Ended Input
1.22 V (V
0 V (GND)
ADEN
R/W
7
0
BG
ADSC
)
R/W
6
0
ADATE
R/W
5
0
Positive Differential
Input
ADC2
ADC3
ADC4
ADC5
N/A
ADIF
R/W
4
0
ADIE
R/W
3
0
ADPS2
R/W
2
0
Negative Differential
Input
ADC2
ADC2
ADC2
ADC2
ADPS1
R/W
1
0
ATmega64(L)
ADPS0
R/W
0
0
ADCSRA
Gain
1x
1x
1x
1x
245

Related parts for ATMEGA64-16AI