EFM32G230F64 Energy Micro, EFM32G230F64 Datasheet

MCU 32BIT 64KB FLASH 64-QFN

EFM32G230F64

Manufacturer Part Number
EFM32G230F64
Description
MCU 32BIT 64KB FLASH 64-QFN
Manufacturer
Energy Micro
Series
Geckor

Specifications of EFM32G230F64

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
32MHz
Connectivity
EBI/EMI, I²C, IrDA, SmartCard, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number Of I /o
56
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.8 V
Data Converters
A/D 8x12b, D/A 2x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Processor Series
EFM32G230
Core
ARM Cortex-M3
Data Bus Width
32 bit
Data Ram Size
16 KB
Interface Type
I2C, UART
Maximum Clock Frequency
32 MHz
Number Of Programmable I/os
56
Number Of Timers
3
Operating Supply Voltage
1.8 V to 3.8 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
• ARM Cortex-M3 CPU platform
• Flexible Energy Management System
• 128/64/32 KB Flash
• 16/16/8 KB RAM
• 56 General Purpose I/O pins
• 8 Channel DMA Controller
• 8 Channel Peripheral Reflex System for autonomous inter-pe-
• Hardware AES with 128/256-bit keys in 54/75 cycles
• Timers/Counters
• High Performance 32-bit processor @ up to 32 MHz
• Memory Protection Unit
• Wake-up Interrupt Controller
• 20 nA @ 3 V Shutoff Mode
• 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out
• 0.9 µA @ 3 V Deep Sleep Mode, including Real Time Clock with
• 45 µA/MHz @ 3 V Sleep Mode
• 180 µA/MHz @ 3 V Run Mode, with code executed from flash
• Configurable Push-pull, Open-drain, pull-up/down, input filter,
• Configurable peripheral I/O locations
• 16 asynchronous external interrupts
ripheral signaling
• 3× 16-bit Timer/Counter
• 16-bit Low Energy Timer
• 24-bit Real-Time Counter
• 3× 8-bit Pulse Counter
• Watchdog Timer with dedicated RC oscillator @ 50 nA
EFM32G230 DATASHEET
F128/F64/F32
EFM32G230 microcontrollers are suited for all battery operated applications
Detector, RAM and CPU retention
32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM
and CPU retention
drive strength
• 3×3 Compare/Capture/PWM channels
• Dead-Time Insertion on TIMER0
• Asynchronous pulse counting/quadrature decoding
Energy Metering
001122
kWh
Industrial/ Hom e Autom ation
Hum idity
80° C
75%
Wireless Alarm / Security
• Communication interfaces
• Ultra low power precision analog peripherals
• Ultra efficient Power-on Reset and Brown-Out Detec-
• 2-pin Serial Wire Debug interface
• Pre-Programmed Serial Bootloader
• Temperature range -40 to 85 ºC
• Single power supply 1.8 to 3.8 V
• QFN64 package
...the world's most energy friendly microcontrollers
• 3× Universal Synchronous/Asynchronous Receiv-
• 2× Low Energy UART
• I
• 12-bit 1 Msamples/s Analog to Digital Converter
• 12-bit 500 ksamples/s Digital to Analog Converter
• 2× Analog Comparator
• Supply Voltage Comparator
tor
• 1-pin Serial Wire Viewer
er/Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA
• Triple buffered full/half-duplex operation
• 4-16 data bits
• Autonomous operation with DMA in Deep Sleep
• Address recognition in Stop Mode
• 8 single ended channels/4 differential channels
• On-chip temperature sensor
• Conversion tailgating for predictable latency
• 2 single ended channels/1 differential channel
• Programmable speed/current
• Capacitive sensing with up to 16 inputs
2
C Interface with SMBus support
Mode
Medical System s

Related parts for EFM32G230F64

EFM32G230F64 Summary of contents

Page 1

EFM32G230 DATASHEET F128/F64/F32 • ARM Cortex-M3 CPU platform • High Performance 32-bit processor @ MHz • Memory Protection Unit • Wake-up Interrupt Controller • Flexible Energy Management System • Shutoff Mode • ...

Page 2

... Ordering Information Table 1.1 (p. 2) shows the available EFM32G230 devices. Table 1.1. Ordering Information Ordering Code Flash (KB) EFM32G230F32-QFN64 32 EFM32G230F64-QFN64 64 EFM32G230F128-QFN64 128 Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information. 1.1 Block Diagram A block diagram of the EFM32G230 is shown in Figure 1.1 ( ...

Page 3

System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide ...

Page 4

Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of ...

Page 5

EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 2.1.16 Low Energy Timer (LETIMER) TM The unique LETIMER , the Low Energy Timer, ...

Page 6

USART communication, which can be routed to several locations on the device. The GPIO supports asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin ...

Page 7

Module GPIO 2.3 Memory Map The EFM32G230 memory map is shown in Figure 2.1 ( with RAM and Flash sizes for the largest memory configuration. Figure 2.1. EFM32G230 Memory Map with largest RAM and Flash sizes 2010-12-17 - ...

Page 8

Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on T lation and/or technology characterisation unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, ...

Page 9

Environmental Table 3.3. Environmental Symbol Parameter V ESD (Human Body Model ESDHBM HBM) V ESD (Charged Device ESDCDM Model, CDM) Latch-up sensitivity test passed level A according to JEDEC JESD 78B method Class II, 85°C. 2010-12-17 - d0005_Rev1.20 ...the ...

Page 10

Current Consumption Table 3.4. Current Consumption Symbol Parameter EM0 current. No prescal- ing. Running prime num- I EM0 ber calculation code from Flash. I EM1 current EM1 I EM2 current EM2 I EM3 current EM3 I EM4 current EM4 ...

Page 11

Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 28MHz 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] Figure 3.2. EM0 Current consumption while ...

Page 12

Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14MHz 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] Figure 3.4. EM0 Current consumption ...

Page 13

Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 7MHz 1.45 1.40 1.35 1.30 1.25 1.20 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] Figure 3.6. EM1 Current consumption with all peripheral ...

Page 14

Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21MHz 1.08 1.06 1.04 1.02 1.00 0.98 0.96 0.94 0.92 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] Figure 3.8. EM1 Current consumption with all peripheral ...

Page 15

Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11MHz 0.62 0.60 0.58 0.56 0.54 0.52 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and ...

Page 16

Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32 kHz LFRCO. 3.5 3.0 2.5 2.0 1.5 1.0 0.5 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] Figure 3.12. EM3 current consumption. 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ...

Page 17

Figure 3.13. EM4 current consumption. 0.45 - 40.0°C - 15.0°C 0.40 5.0°C 25.0°C 45.0°C 0.35 65.0°C 85.0°C 0.30 0.25 0.20 0.15 0.10 0.05 0.00 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.5 Transition between Energy Modes Table 3.5. ...

Page 18

Table 3.6. Power Management Symbol Parameter V BOD threshold on falling BODextthr- external supply voltage V BOD threshold on falling BODintthr- internally regulated supply voltage V BOD threshold on rising ex- BODextthr+ ternal supply voltage t Delay from reset is ...

Page 19

General Purpose Input Output Table 3.8. GPIO Symbol Parameter V Input low voltage IOIL V Input high voltage IOIH V Output high voltage IOOH V Output low voltage IOOL I Input leakage current IOLEAK R I/O pin pull-up resistor ...

Page 20

Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage 0.20 0.15 0.10 0.05 0.00 0.0 0.5 1.0 Low- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.0 0.5 1.0 Low- Level Output Voltage [V] GPIO_Px_CTRL ...

Page 21

Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage 0.00 - 40°C 25°C 85°C –0.05 –0.10 –0.15 –0.20 0.0 0.5 1.0 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0 - 40°C 25°C 85°C –5 –10 –15 –20 0.0 ...

Page 22

Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.5 1.0 1.5 Low- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.0 0.5 1.0 ...

Page 23

Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage 0.0 - 40°C 25°C 85°C –0.1 –0.2 –0.3 –0.4 –0.5 0.0 0.5 1.0 1.5 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0 - 40°C 25°C 85°C –10 –20 –30 ...

Page 24

Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.5 1.0 1.5 2.0 Low- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.0 0.5 ...

Page 25

Figure 3.19. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 - 40°C 25°C 85°C –0.1 –0.2 –0.3 –0.4 –0.5 –0.6 –0.7 –0.8 0.0 0.5 1.0 1.5 2.0 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOWEST 0 - 40°C 25°C ...

Page 26

Oscillators 3.9.1 LFXO Table 3.9. LFXO Symbol Parameter f Supported nominal crystal LFXO frequency ESR Supported crystal equiv- LFXO alent series resistance (ESR) C Supported crystal external LFXOL load range DC Duty cycle LFXO I Current consumption for LFXO ...

Page 27

LFRCO Table 3.11. LFRCO Symbol Parameter f Oscillation frequency , LFRCO =25°C DD AMB t Startup time not including LFRCO software calibration I Current consumption LFRCO TC Temperature coefficient LFRCO VC Supply voltage coefficient ...

Page 28

HFRCO Table 3.12. HFRCO Symbol Parameter Oscillation frequency HFRCO 3 =25°C AMB t Settling time after start-up HFRCO_settling I Current consumption HFRCO DC Duty cycle HFRCO Temperature coefficient, TC HFRCO ...

Page 29

Figure 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Temperature and Supply Voltage 1.30 1.25 1.20 1.15 1.10 1.05 1.00 0.95 0.90 0.85 1.8 2.2 2.6 3.0 Vdd [V] Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Temperature and ...

Page 30

Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage 14.15 14.10 14.05 14.00 13.95 13.90 13.85 1.8 2.2 2.6 3.0 Vdd [V] Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage 21.2 ...

Page 31

ULFRCO Table 3.13. ULFRCO Symbol Parameter f Oscillation frequency ULFRCO TC Temperature coefficient ULFRCO VC Supply voltage coefficient ULFRCO 3.10 Analog Digital Converter (ADC) Table 3.14. ADC Symbol Parameter V Input voltage range ADCIN V Input range of external ...

Page 32

Symbol Parameter C Input RC filter/decoupling ADCFILT capacitance f ADC Clock Frequency ADCCLK t Conversion time ADCCONV t Acquisition time ADCACQ t Required acquisition time ADCACQVDD3 for VDD/3 reference Startup time of reference generator and ADC core in NORMAL mode ...

Page 33

Symbol Parameter Signal to Noise-puls-Distor- SNDR ADC tion Ratio (SNDR) 2010-12-17 - d0005_Rev1.20 ...the world's most energy friendly microcontrollers Condition Min 200 kSamples/s, 12 bit, dif- ferential, internal 1.25V refer- ence 200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference ...

Page 34

Symbol Parameter Spurious-Free Dynamic SFDR ADC Range (SFDR) V Offset voltage ADCOFFSET Thermometer output gradi- TGRAD ADCTH ent DNL Differential non-linearity ADC (DNL) INL Integral non-linearity (INL), ADC End point method 2010-12-17 - d0005_Rev1.20 ...the world's most energy friendly microcontrollers ...

Page 35

Symbol Parameter MC No missing codes ADC 1 On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, - ...

Page 36

Typical performance Figure 3.29. ADC Frequency Spectrum, Vdd = 3V, Temp = 25° 0 –20 –40 –60 –80 –100 –120 –140 –160 –180 Frequency [kHz] 1.25V Reference 0 –20 –40 –60 –80 –100 –120 –140 ...

Page 37

Figure 3.30. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25° 1.5 1.0 0.5 0.0 –0.5 –1.0 0 512 1024 1536 2048 2560 Output code 1.25V Reference 0.8 0.6 0.4 0.2 0.0 –0.2 –0.4 –0.6 0 512 ...

Page 38

Figure 3.31. ADC Differental Linearity Error vs Code, Vdd = 3V, Temp = 25° 1.0 0.5 0.0 –0.5 –1.0 0 512 1024 1536 2048 2560 Output code 1.25V Reference 1.0 0.5 0.0 –0.5 –1.0 0 512 1024 1536 2048 2560 ...

Page 39

Figure 3.32. ADC Absolute Offset, Common Mode = Vdd / –1 –2 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) Offset vs Supply Voltage, Temp = 25° Figure 3.33. ADC Dynamic Performance ...

Page 40

Figure 3.34. ADC Temperature sensor readout 2600 2500 2400 2300 2200 2100 –40 –25 –15 – Tem perature [°C] 3.11 Digital Analog Converter (DAC) Table 3.15. DAC Symbol Parameter V Output voltage range DACOUT V Output ...

Page 41

Symbol Parameter Signal to Noise-pulse Dis- SNDR DAC tortion Ratio (SNDR) Spurious-Free Dynamic SFDR DAC Range(SFDR) V Offset voltage DACOFFSET V Sample-hold mode voltage DACSHMDRIFT drift DNL Differential non-linearity DAC INL Integral non-linearity DAC MC No missing codes DAC 2010-12-17 ...

Page 42

Analog Comparator (ACMP) Table 3.16. ACMP Symbol Parameter V Input voltage range ACMPIN V ACMP Common Mode volt- ACMPCM age range I Active current ACMP Current consumption of in- I ACMPREF ternal voltage reference V Offset voltage ACMPOFFSET V ...

Page 43

Figure 3.35. Typical ACMP Characteristics 2.5 2.0 1.5 1.0 0.5 0 ACMP_CTRL_BIASPROG Current consumption 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12 ACMP_CTRL_HYSTSEL Hysteresis 2010-12-17 - d0005_Rev1.20 ...

Page 44

Voltage Comparator (VCMP) Table 3.17. VCMP Symbol Parameter V Input voltage range VCMPIN V VCMP Common Mode volt- VCMPCM age range I Active current VCMP t Startup time reference gen- VCMPREF erator V Offset voltage VCMPOFFSET V VCMP hysteresis ...

Page 45

Symbol Parameter I GPIO current GPIO I PRS current PRS I DMA current DMA 2010-12-17 - d0005_Rev1.20 ...the world's most energy friendly microcontrollers Condition Min GPIO idle current, clock en- abled PRS idle current Clock enable 45 Typ Max Unit ...

Page 46

Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32G230. 4.1 Pinout The EFM32G230 pinout is shown in Figure 4.1 (p. 46) and ...

Page 47

QFN64 Pin# and Name Pin Name Analog 3 PA2 4 PA3 5 PA4 6 PA5 7 PA6 8 IOVDD_0 Digital IO power supply 0. 9 PC0 ACMP0_CH0 #0 10 PC1 ACMP0_CH1 #0 11 PC2 ACMP0_CH2 #0 12 PC3 ACMP0_CH3 #0 ...

Page 48

QFN64 Pin# and Name Pin Name Analog 39 VDD_DREG Power supply for on-chip voltage regulator. Decouple output for on-chip voltage regulator, nominally at 1 DECOUPLE An external capacitance of size C 41 PC8 ACMP1_CH0 #0 42 PC9 ACMP1_CH1 ...

Page 49

Table 4.2. Alternate functionality overview Alternate LOCATION Functionality 0 1 ACMP0_CH0 PC0 ACMP0_CH1 PC1 ACMP0_CH2 PC2 ACMP0_CH3 PC3 ACMP0_CH4 PC4 ACMP0_CH5 PC5 ACMP0_CH6 PC6 ACMP0_CH7 PC7 ACMP0_O PE13 ACMP1_CH0 PC8 ACMP1_CH1 PC9 ACMP1_CH2 PC10 ACMP1_CH3 PC11 ACMP1_CH4 PC12 ACMP1_CH5 PC13 ...

Page 50

Alternate LOCATION Functionality 0 1 I2C0_SDA PA0 PD6 LETIM0_OUT0 PD6 PB11 LETIM0_OUT1 PD7 PB12 LEU0_RX PD5 PB14 LEU0_TX PD4 PB13 LEU1_RX PC7 PA6 LEU1_TX PC6 PA5 LFXTAL_N PB8 LFXTAL_P PB7 PCNT0_S0IN PC13 PCNT0_S1IN PC14 PCNT1_S0IN PC4 PCNT1_S1IN PC5 PCNT2_S0IN PD0 ...

Page 51

Alternate LOCATION Functionality 0 1 US2_CLK PC4 US2_CS PC5 US2_RX PC3 US2_TX PC2 4.3 GPIO pinout overview The specific GPIO pins available in EFM32G230 is shown in Table 4.3 (p. 51) . Each GPIO port is organized as 16-bit ports ...

Page 52

Note: 1. 'e' represents the basic terminal pitch. Specifies the true geometric position of the terminal axis. 2. Datum 'C' is the mounting surface with which the package is in contact 3. Specifies the vertical shift of the flat part ...

Page 53

PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. QFN64 PCB Land Pattern 0.85 0.30 0.50 Figure 5.2. QFN64 PCB Solder Mask 0.97 0.42 0.50 2010-12-17 - d0005_Rev1.20 ...the world's most energy friendly microcontrollers ...

Page 54

Figure 5.3. QFN64 PCB Stencil Design 0.75 0.22 0.50 1. The drawings are not to scale. 2. All dimensions are in millimeters. 3. All drawings are subject to change without notice. 4. The PCB Land Pattern drawing is in compliance ...

Page 55

Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure ...

Page 56

Revision History 7.1 Revision 1.20 December 17th, 2010 Increased max storage temperature. Added data for <150°C and <70°C on Flash data retention. Changed latch-up sensitivity test description. Added IO leakage current Added Flash current consumption Updated HFRCO data Updated ...

Page 57

Revision 1.00 April 23rd, 2010 ADC_VCM line removed. Added pinout illustration and additional pinout table. Changed "Errata" chapter. Errata description moved to separate document. Document changed status from "Preliminary". Updated "Electrical Characteristics" chapter. 7.5 Revision 0.85 February 19th, 2010 ...

Page 58

Updated errata section. 7.10 Revision 0.80 Initial preliminary revision, October 19th, 2009 2010-12-17 - d0005_Rev1.20 ...the world's most energy friendly microcontrollers www.energymicro.com 58 ...

Page 59

... Micro reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Energy Micro shall have no liability for the consequences of use of the infor- mation supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Energy Micro. A " ...

Page 60

... B Contact Information B.1 Energy Micro Corporate Headquarters Postal Address Energy Micro AS P.O. Box 4633 Nydalen N-0405 Oslo NORWAY www.energymicro.com Phone: + Fax B.2 Global Contacts Visit www.energymicro.com for information on global distributors and representatives or contact sales@energymicro.com for additional information. Americas www.energymicro.com/americas www.energymicro.com/emea 2010-12-17 - d0005_Rev1.20 ...

Page 61

... Revision 0.83 ............................................................................................................................... 57 7.8. Revision 0.82 ............................................................................................................................... 57 7.9. Revision 0.81 ............................................................................................................................... 57 7.10. Revision 0.80 .............................................................................................................................. 58 A. Disclaimer and Trademarks ....................................................................................................................... 59 A.1. Disclaimer ................................................................................................................................... 59 A.2. Trademark Information ................................................................................................................... 59 B. Contact Information ................................................................................................................................. 60 B.1. Energy Micro Corporate Headquarters .............................................................................................. 60 B.2. Global Contacts ............................................................................................................................ 60 2010-12-17 - d0005_Rev1.20 ...the world's most energy friendly microcontrollers www.energymicro.com 61 ...

Page 62

List of Figures 1.1. Block Diagram ....................................................................................................................................... 2 2.1. EFM32G230 Memory Map with largest RAM and Flash sizes .......................................................................... 7 3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 28MHz ..................................................................................................................................................... 11 3.2. ...

Page 63

List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 6 3.1. Absolute Maximum Ratings ...................................................................................................................... 8 3.2. General Operating Conditions ................................................................................................................... 8 3.3. Environmental ........................................................................................................................................ 9 3.4. Current Consumption ............................................................................................................................. 10 3.5. Energy Modes Transitions ...................................................................................................................... 17 ...

Page 64

List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 42 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 44 2010-12-17 - d0005_Rev1.20 ...the world's most energy friendly microcontrollers www.energymicro.com 64 ...

Page 65

...

Related keywords