EP3C120F484C7N Altera, EP3C120F484C7N Datasheet - Page 142

IC CYCLONE III FPGA 120K 484FBGA

EP3C120F484C7N

Manufacturer Part Number
EP3C120F484C7N
Description
IC CYCLONE III FPGA 120K 484FBGA
Manufacturer
Altera
Series
Cyclone® IIIr

Specifications of EP3C120F484C7N

Number Of Logic Elements/cells
119088
Number Of Labs/clbs
7443
Total Ram Bits
3981312
Number Of I /o
283
Voltage - Supply
1.15 V ~ 1.25 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
484-FBGA
Family Name
Cyclone III
Number Of Logic Blocks/elements
119088
# I/os (max)
283
Frequency (max)
437.5MHz
Process Technology
65nm
Operating Supply Voltage (typ)
1.2V
Logic Cells
119088
Ram Bits
3981312
Operating Supply Voltage (min)
1.15V
Operating Supply Voltage (max)
1.25V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
484
Package Type
FBGA
For Use With
544-2601 - KIT DEV CYCLONE III LS EP3CLS200544-2589 - KIT DEV EMB CYCLONE III EDITION544-2566 - KIT DEV DSP CYCLONE III EDITION544-2444 - KIT DEV CYCLONE III EP3C120544-2411 - KIT DEV NIOS II CYCLONE III ED.
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Compliant
Other names
544-2528

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP3C120F484C7N
Manufacturer:
ALTERA
Quantity:
3 000
Part Number:
EP3C120F484C7N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP3C120F484C7N
Manufacturer:
ALTERA
0
Part Number:
EP3C120F484C7N
Manufacturer:
ALTERA
Quantity:
150
7–18
Software Overview
Cyclone III Device Handbook, Volume 1
f
f
1
For more information about PCB layout guidelines, refer to
Layout Guidelines
Cyclone III device family high-speed I/O system interfaces are created in core logic
by a Quartus II software megafunction because they do not have a dedicated circuit
for the SERDES. The Cyclone III device family uses the I/O registers and LE registers
to improve the timing performance and support the SERDES. Altera Quartus II
software allows you to design your high-speed interfaces using the ALTLVDS
megafunction. This megafunction implements either a high-speed deserializer
receiver or a high-speed serializer transmitter. There is a list of parameters in the
ALTLVDS megafunction that you can set to customize your SERDES based on your
design requirements. The megafunction is optimized to use Cyclone III device family
resources to create high-speed I/O interfaces in the most effective manner.
When you are using the Cyclone III device family with the ALTLVDS megafunction,
the interface always sends the MSB of your parallel data first.
For more information about designing your high-speed I/O systems interfaces using
the ALTLVDS megafunction, refer to the
Quartus II
Use surface mount components.
Avoid 90° corners on board traces.
Use high-performance connectors.
Design backplane and card traces so that trace impedance matches the impedance
of the connector and termination.
Keep an equal number of vias for both signal traces.
Create equal trace lengths to avoid skew between signals. Unequal trace lengths
result in misplaced crossing points and decrease system margins as the
transmitter-channel-to-channel skew (TCCS) value increases.
Limit vias because they cause discontinuities.
Keep switching transistor-to-transistor logic (TTL) signals away from differential
signals to avoid possible noise coupling.
Do not route TTL clock signals to areas under or above the differential signals.
Analyze system-level signals.
Handbook.
and
AN 315: Guidelines for Designing High-Speed FPGA
Chapter 7: High-Speed Differential Interfaces in the Cyclone III Device Family
ALTLVDS Megafunction User Guide
© December 2009 Altera Corporation
AN 224: High-Speed Board
PCBs.
Software Overview
and the

Related parts for EP3C120F484C7N