AD8328ARQ Analog Devices Inc, AD8328ARQ Datasheet - Page 12

IC LINE DRIVE CABLE 5V 20-QSOP

AD8328ARQ

Manufacturer Part Number
AD8328ARQ
Description
IC LINE DRIVE CABLE 5V 20-QSOP
Manufacturer
Analog Devices Inc
Type
Line Driver, Transmitterr
Datasheet

Specifications of AD8328ARQ

Rohs Status
RoHS non-compliant
Applications
Modems, Set-Top Boxes
Mounting Type
Surface Mount
Package / Case
20-QSOP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD8328ARQ
Quantity:
1 416
Part Number:
AD8328ARQ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD8328ARQ-REEL
Manufacturer:
QUALCOMM
Quantity:
9 872
Part Number:
AD8328ARQ-REEL
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD8328ARQZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD8328
INITIAL POWER-UP
When the supply voltage is first applied to the AD8328, the gain
of the amplifier is initially set to Gain Code 1. Since power is
first applied to the amplifier, the TXEN pin should be held low
(Logic 0) to prevent forward signal transmission. After power is
applied to the amplifier, the gain can be set to the desired level
by following the procedure provided in the SPI Programming
and Gain Adjustment section. The TXEN pin can then be
brought from Logic 0 to Logic 1, enabling forward signal
transmission at the desired gain level.
RAMP PIN AND BYP PIN FEATURES
The RAMP pin is used to control the length of the burst on and
off transients. By default, leaving the RAMP pin unconnected
results in a transient that is fully compliant with DOCSIS 2.0
Section 6.2.21.2, Spurious Emissions During Burst On/Off
Transients. DOCSIS requires that all between-burst transients
must be dissipated no faster than 2 μs; and adding capacitance
to the RAMP pin adds more time to the transient.
The BYP pin is used to decouple the output stage at midsupply.
Typically, for normal DOCSIS operation, the BYP pin should be
decoupled to ground with a 0.1 μF capacitor. However, in
applications that require transient on/off times faster than 2 μs,
smaller capacitors can be used, but it should be noted that the
BYP pin should always be decoupled to ground.
TRANSMIT ENABLE (TXEN) AND SLEEP
The asynchronous TXEN pin is used to place the AD8328 into
between-burst mode. In this reduced current state, the output
impedance of 75 Ω is maintained. Applying Logic 0 to the
TXEN pin deactivates the on-chip amplifier, providing a 97.8%
reduction in consumed power. For 5 V operation, the supply
current is typically reduced from 120 mA to 2.6 mA. In this
mode of operation, between-burst noise is minimized and high
input to output isolation is achieved. In addition to the TXEN
pin, the AD8328 also incorporates an asynchronous SLEEP pin,
which can be used to further reduce the supply current to
approximately 20 μA. Applying Logic 0 to the SLEEP pin places
the amplifier into SLEEP mode. Transitioning into or out of
SLEEP mode can result in a transient voltage at the output of
the amplifier.
DISTORTION, ADJACENT CHANNEL POWER, AND
DOCSIS
To deliver the DOCSIS required 58 dBmV of QPSK signal and
55 dBmV of 16 QAM signal, the PA is required to deliver up to
60 dBmV. This added power is required to compensate for
losses associated with the diplex filter or other passive components
that may be included in the upstream path of cable modems
or set-top boxes. It should be noted that the AD8328 was
characterized with a differential input signal. Figure 7 and
Figure 10 show the AD8328 second and third harmonic
distortion performance vs. the fundamental frequency for
Rev. A | Page 12 of 20
various output power levels. These figures are useful for
determining the in-band harmonic levels from 5 MHz to
65 MHz. Harmonics higher in frequency (above 42 MHz for
DOCSIS and above 65 MHz for EuroDOCSIS) are sharply
attenuated by the low-pass filter function of the diplexer.
Another measure of signal integrity is adjacent channel power,
commonly referred to as ACP. DOCSIS 2.0, Section 6.2.21.1.1
states, “Spurious emissions from a transmitted carrier may
occur in an adjacent channel that could be occupied by a carrier
of the same or different symbol rates. ” Figure 9 shows the
measured ACP for a 60 dBmV QPSK signal taken at the output
of the AD8328 evaluation board. The transmit channel width
and adjacent channel width in Figure 9 correspond to the
symbol rates of 160 kSym/s. Table 6 shows the ACP results for
the AD8328 driving a QPSK 60 dBmV signal for all conditions
in DOCSIS Table 6-9, Adjacent Channel Spurious Emissions.
NOISE AND DOCSIS
At minimum gain, the AD8328 output noise spectral density is
1.2 nV/√Hz measured at 10 MHz. DOCSIS Table 6-10, Spurious
Emissions in 5 MHz to 42 MHz, specifies the output noise for
various symbol rates. The calculated noise power in dBmV for
160 kSym/s is
Comparing the computed noise power of −66.4 dBmV to the
+8 dBmV signal yields −74.4 dBc, which meets the required
level set forth in DOCSIS Table 6-10. As the AD8328 gain is
increased above this minimum value, the output signal
increases at a faster rate than the noise, resulting in a signal-
to-noise ratio that improves with gain. In transmit disable
mode, the output noise spectral density is 1.1 nV/√Hz, which
results in −67 dBmV when computed over 160 kSym/s. The
noise power was measured directly at the output of the
AD8328AR-EVAL board.
EVALUATION BOARD FEATURES AND OPERATION
The AD8328 evaluation board and control software can be used
to control the AD8328 upstream cable driver via the parallel
port of a PC. A standard printer cable connected to the parallel
port of the PC is used to feed all the necessary data to the AD8328
using the Windows®-based control software. This package
provides a means of controlling the gain and the power mode of
the AD8328. With this evaluation kit, the AD8328 can be evaluated
in either a single-ended or differential input configuration. See
Figure 26 for a schematic of the evaluation board.
20
×
log
⎜ ⎜
1.2
Hz
nV
2
×
160
kHz
⎟ ⎟
+
60
=
66.4
dBmV
(1)

Related parts for AD8328ARQ