ltc3787gn Linear Technology Corporation, ltc3787gn Datasheet - Page 13

no-image

ltc3787gn

Manufacturer Part Number
ltc3787gn
Description
Ltc3787 - Polyphase Synchronous Boost Controller
Manufacturer
Linear Technology Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC3787GN
Manufacturer:
LINEAR/凌特
Quantity:
20 000
operaTion
In forced continuous operation or when clocked by an
external clock source to use the phase-locked loop (see
the Frequency Selection and Phase-Locked Loop section),
the inductor current is allowed to reverse at light loads or
under large transient conditions. The peak inductor cur-
rent is determined by the voltage on the ITH pin, just as
in normal operation. In this mode, the efficiency at light
loads is lower than in Burst Mode operation. However,
continuous operation has the advantages of lower output
voltage ripple and less interference to audio circuitry, as
it maintains constant-frequency operation independent
of load current.
When the PLLIN/MODE pin is connected for pulse-skipping
mode, the LTC3787 operates in PWM pulse-skipping mode
at light loads. In this mode, constant-frequency operation
is maintained down to approximately 1% of designed
maximum output current. At very light loads, the current
comparator ICMP may remain tripped for several cycles
and force the external bottom MOSFET to stay off for
the same number of cycles (i.e., skipping pulses). The
inductor current is not allowed to reverse (discontinuous
operation). This mode, like forced continuous operation,
exhibits low output ripple as well as low audio noise and
reduced RF interference as compared to Burst Mode
operation. It provides higher low current efficiency than
forced continuous mode, but not nearly as high as Burst
Mode operation.
Frequency Selection and Phase-Locked Loop
(FREQ and PLLIN/MODE Pins)
The selection of switching frequency is a trade-off between
efficiency and component size. Low frequency opera-
tion increases efficiency by reducing MOSFET switching
losses, but requires larger inductance and/or capacitance
to maintain low output ripple voltage.
The switching frequency of the LTC3787’s controllers can
be selected using the FREQ pin.
If the PLLIN/MODE pin is not being driven by an external
clock source, the FREQ pin can be tied to SGND, tied to
INTV
FREQ to SGND selects 350kHz while tying FREQ to INTV
selects 535kHz. Placing a resistor between FREQ and SGND
CC
, or programmed through an external resistor. Tying
CC
allows the frequency to be programmed between 50kHz
and 900kHz, as shown in Figure 6.
A phase-locked loop (PLL) is available on the LTC3787
to synchronize the internal oscillator to an external clock
source that is connected to the PLLIN/MODE pin. The
LTC3787’s phase detector adjusts the voltage (through
an internal lowpass filter) of the VCO input to align the
turn-on of the first controller’s external bottom MOSFET
to the rising edge of the synchronizing signal. Thus, the
turn-on of the second controller’s external bottom MOSFET
is 180 or 240 degrees out-of-phase to the rising edge of
the external clock source.
The VCO input voltage is prebiased to the operating fre-
quency set by the FREQ pin before the external clock is
applied. If prebiased near the external clock frequency,
the PLL loop only needs to make slight changes to the
VCO input in order to synchronize the rising edge of the
external clock’s to the rising edge of BG1. The ability to
prebias the loop filter allows the PLL to lock-in rapidly
without deviating far from the desired frequency.
The typical capture range of the LTC3787’s PLL is from
approximately 55kHz to 1MHz, and is guaranteed to lock
to an external clock source whose frequency is between
75kHz and 850kHz.
The typical input clock thresholds on the PLLIN/MODE
pin are 1.6V (rising) and 1.2V (falling).
PolyPhase Applications (CLKOUT and PHASMD Pins)
The LTC3787 features two pins, CLKOUT and PHASMD,
that allow other controller ICs to be daisychained with
the LTC3787 in PolyPhase applications. The clock output
signal on the CLKOUT pin can be used to synchronize
additional power stages in a multiphase power supply
solution feeding a single, high current output or multiple
separate outputs. The PHASMD pin is used to adjust the
phase of the CLKOUT signal as well as the relative phases
between the two internal controllers, as summarized in
Table 1. The phases are calculated relative to the zero
degrees phase being defined as the rising edge of the
bottom gate driver output of controller 1 (BG1). Depend-
ing on the phase selection, a PolyPhase application with
LTC3787
13
3787fa

Related parts for ltc3787gn