LTC3412 LINER [Linear Technology], LTC3412 Datasheet - Page 9

no-image

LTC3412

Manufacturer Part Number
LTC3412
Description
2.5A, 4MHz, Monolithic Synchronous Step-Down Regulator
Manufacturer
LINER [Linear Technology]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC3412AEFE
Manufacturer:
LT
Quantity:
1 000
Part Number:
LTC3412AEFE
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3412AEFE#PBF
Manufacturer:
LT
Quantity:
2 100
Part Number:
LTC3412AEFE#PBF
Manufacturer:
LINEAR21
Quantity:
2 056
Part Number:
LTC3412AEFE#PBF
Manufacturer:
LT/凌特
Quantity:
20 000
Part Number:
LTC3412AEFE#TRPBF
Manufacturer:
LT
Quantity:
2 100
Part Number:
LTC3412AEFE#TRPBF
Manufacturer:
LT
Quantity:
22
Part Number:
LTC3412AEUF
Manufacturer:
LT
Quantity:
10 000
Part Number:
LTC3412AEUF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC3412AEUF#PBFG
Manufacturer:
LT/凌特
Quantity:
20 000
Part Number:
LTC3412AEUF#TRPBF
Manufacturer:
LT/凌特
Quantity:
20 000
internally by adding a compensating ramp to the inductor
current signal at duty cycles in excess of 40%. Normally,
the maximum inductor peak current is reduced when
slope compensation is added. In the LTC3412, however,
slope compensation recovery is implemented to keep the
maximum inductor peak current constant throughout the
range of duty cycles. This keeps the maximum output
current relatively constant regardless of duty cycle.
APPLICATIO S I FOR ATIO
The basic LTC3412 application circuit is shown in Fig-
ure 1. External component selection is determined by the
maximum load current and begins with the selection of the
inductor value and operating frequency followed by C
and C
Operating Frequency
Selection of the operating frequency is a tradeoff between
efficiency and component size. High frequency operation
allows the use of smaller inductor and capacitor values.
Operation at lower frequencies improves efficiency by
reducing internal gate charge and switching losses but
requires larger inductance values and/or capacitance to
maintain low output ripple voltage.
The operating frequency of the LTC3412 is determined by
an external resistor that is connected between the R
and ground. The value of the resistor sets the ramp current
that is used to charge and discharge an internal timing
capacitor within the oscillator and can be calculated by
using the following equation:
Although frequencies as high as 4MHz are possible, the
minimum on-time of the LTC3412 imposes a minimum
limit on the operating duty cycle. The minimum on-time is
typically 110ns. Therefore, the minimum duty cycle is
equal to 100 • 110ns • f(Hz).
OPERATIO
R
OSC
OUT
=
.
3 23 10
.
f Hz
( )
U
U
11
( )
Ω −
U
10
k
Ω
W
U
T
pin
IN
Short-Circuit Protection
When the output is shorted to ground, the inductor current
decays very slowly during a single switching cycle. To
prevent current runaway from occurring, a secondary
current limit is imposed on the inductor current. If the
inductor valley current increases larger than 4.8A, the top
power MOSFET will be held off and switching cycles will be
skipped until the inductor current falls to a safe level.
Inductor Selection
For a given input and output voltage, the inductor value
and operating frequency determine the ripple current. The
ripple current ΔI
with higher inductance.
Having a lower ripple current reduces the ESR losses in
the output capacitors and the output voltage ripple. High-
est efficiency operation is achieved at low frequency with
small ripple current. This, however, requires a large
inductor.
A reasonable starting point for selecting the ripple current
is ΔI
highest V
below a specified maximum, the inductor value should be
chosen according to the following equation:
The inductor value will also have an effect on Burst Mode
operation. The transition from low current operation begins
when the peak inductor current falls below a level set by the
burst clamp. Lower inductor values result in higher ripple
current which causes this to occur at lower load currents.
This causes a dip in efficiency in the upper range of low
current operation. In Burst Mode operation, lower induc-
tance values will cause the burst frequency to increase.
Δ =
L
L
I
=
L
= 0.4(I
f I
Δ
IN
V
V
. To guarantee that the ripple current stays
L MAX
OUT
OUT
fL
MAX
(
L
). The largest ripple current occurs at the
increases with higher V
)
1
1
V
V
OUT
IN
V
IN MAX
V
OUT
(
)
LTC3412
IN
and decreases
3412fb
9

Related parts for LTC3412