ADP3203JRU-10-RL7 AD [Analog Devices], ADP3203JRU-10-RL7 Datasheet - Page 5

no-image

ADP3203JRU-10-RL7

Manufacturer Part Number
ADP3203JRU-10-RL7
Description
2-Phase IMVP-II & IMVP-III Core Controller for Mobile CPUs
Manufacturer
AD [Analog Devices]
Datasheet
REV. PrD
Pin
1
2
3
4–8
9
10
11
Mnemonic
HYSSET
DSHIFT
BSHIFT
VID[4:0]
BOM
DSLP
DPRSLP
PRELIMINARY TECHNICAL DATction Description
Function
Hysteresis Set. This is an analog I/O pin whose output is a fixed voltage reference and whose input
is a current that is programmed by an external resistance to ground. The current is used in the IC
to set the hysteretic currents for the Core Comparator and the Current Limit Comparator.
Modification of the resistance will affect both the hysteresis of the feedback regulation and the
current limit set point and hysteresis.
Deep Sleep Shift. This is an analog I/O pin whose output is the VID reference voltage and whose
input is a current that is programmed by an external resistance to ground. The current is used in
the IC to set a switched bias current out of the RAMP pin, depending on whether it is activated by
the DSLP# signal. When activated, this added bias current creates a downward shift of the
regulated core voltage to a predetermined optimum level for regulation corresponding to Deep
Sleep mode of CPU operation. The use of the VID code as the reference makes the Deep Sleep
offset a fixed percentage of the VID setting, as required by specifications.
Battery Optimized Mode (BOM) Shift. This is an analog I/O pin whose output that is the VID
reference voltage and whose input current is programmed by an external resistance to ground. The
current is used in the IC to set a switched bias current out of the RAMP pin, depending on
whether it is activated by the BOM signal. When activated, this added bias current creates a
downward shift of the regulated core voltage to a predetermined optimum level for regulation
corresponding to Battery Optimized Mode of CPU operation. The use of the VID code as the
reference makes the DSHIFT a fixed percentage of the VID setting, as required by specifications.
Voltage Identification Inputs. These are the VID inputs for logic control of the programmed
reference voltage that appears at the DACOUT pin, and, via external component configuration, is
used for setting the output voltage regulation point. The VID pins have a specified internal pullup
current such that, if left open, the pins will default to a logic high state. The VID code does not set
the DAC output voltage directly but through a transparent latch which is clocked by the BOM
pin's GMUXSEL signal rising and falling edge.
Battery Optimized Mode Control (active low). This is a digital input pin that corresponds to the
system's GMUXSEL signal that corresponds to Battery Optimized Mode of the CPU operation in
its active low state and Performance Optimized Mode (POM) in its deactivated high state. The
signal also controls the optimal positioning of the core voltage regulation level by offsetting it
downwards in Battery Optimized Mode according to the functionality of the BSHIFT and RAMP
pins. It is also used to initiate a masking period for the PWRGD signal whenever a GMUXSEL
signal transition occurs.
Deep Sleep Mode Control (active low). This is a digital input pin corresponding to the system's
STP CPU signal which, in its active state, corresponds to Deep Sleep mode of the CPU operation,
which is a subset operating mode of either BOM or POM operation. The signal controls the
optimal positioning of the core voltage regulation level by offsetting it downwards according to the
functionality of the DSHIFT and RAMP pins.
Deeper Sleep Mode Control (active high). This is a digital input pin corresponding to the system's
DPRSLPVR signal corresponding to Deeper Sleep mode of the CPU operation. The signal when
it is activated controls the DAC output voltage by disconnecting the VID signals from the DAC
input and setting a specified internal Deeper Sleep code instead. At de-assertion of the
DPRSLPVR signal, the DAC output voltage returns to the voltage level determined by the
external VID code. The DPRSLPVR signal is also used to initiate a blanking period for the
PWRGD signal to disable its response to a pending dynamic core voltage change corresponds to
the VID code transition.
PIN FUNCTION DESCRIPTIONS
–5–
ADP3203

Related parts for ADP3203JRU-10-RL7