TWR-K60D100M Freescale Semiconductor, TWR-K60D100M Datasheet - Page 8

no-image

TWR-K60D100M

Manufacturer Part Number
TWR-K60D100M
Description
Development Boards & Kits - ARM K60D 100MHZ TWR MCU MODU
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of TWR-K60D100M

Rohs
yes
Product
Development Platforms
Tool Is For Evaluation Of
MK60DN512VMD10
Core
ARM Cortex M4
Interface Type
USB
Operating Supply Voltage
1.71 V to 3.6 V
For Use With
Freescale Tower Systems
 
 
 
2.2 Clocking 
The Kinetis MCUs start up from an internal digitally controlled oscillator (DCO).  Software can enable 
one or two external oscillators if desired. The external oscillator for the Multipurpose Clock Generator 
(MCG) module can range from 32.768 KHz up to a 32 MHz crystal or ceramic resonator. The external 
oscillator for the Real Time Clock (RTC) module accepts a 32.768 kHz crystal.   
 
The EXTAL pin of the main external oscillator can also be driven directly from an external clock source. 
The TWR‐K60D100M features a 50 MHz on‐board clock oscillator as seen in sheet 4 of the schematics. 
However, when the K60 Ethernet MAC is operating in RMII mode, synchronization of the MCU input 
clock and the 50 MHz RMII transfer clock is important.  In this mode, the MCU input clock must be kept 
in phase with the 50 MHz clock supplied to the external PHY.  Therefore, the TWR‐K60D100M provides 
the option (see description for J6 in Table 5) to select the clock input to the MCU from 1) the on‐board 
50MHz source or 2) an external clock from the CLKIN0 pin on the Primary Connector 3) route CLKIN0 
from TWR‐SER 50 MHz to ENET_1588_CLKIN. When the K60 is operating in Ethernet RMII mode, the 
Tower peripheral module implementing the RMII PHY device should drive a 50 MHz clock on the 
CLKIN0 signal that is kept in phase with the clock supplied to the RMII PHY. Refer to section 2.10 
“Ethernet” for more information. 
2.3 System Power 
In stand‐alone operation, the main power source for the TWR‐K60D100M module is derived from the 
5.0V input from either the USB mini‐B connector, J17, or the debug header, J16, when a shunt is placed 
on jumper J15.  Low‐dropout regulators provide either a 3.3V or 1.8V supply from the 5.0V input 
voltage via J13. Refer to sheet 5 of the TWR‐K60D100M schematics for more details. 
 
When installed into a Tower System, the TWR‐K60D100M can be powered from either an on‐board 
source or from another source in the assembled Tower System.  If both the on‐board and off‐board 
sources are available, the TWR‐K60D100M will default to the off‐board source. 
 
The V_BRD power supplied to the MCU is routed through a jumper, J14. The jumper shunt can be 
removed to allow for either 1) alternate MCU supply voltages to be injected or 2) the measurement of 
power consumed by the MCU. 
2.3.1 RTC VBAT 
The Real Time Clock (RTC) module on the K60 has two modes of operation, system power‐up and 
system power‐down. During system power‐down, the RTC is powered from the backup power supply, 
VBAT. The TWR‐K60D100M provides a battery holder for a coin cell battery that can be used as the 
VBAT supply.  The holder can accept common 20mm diameter 3V lithium coin cell batteries (e.g. 2032, 
2025). Refer to the description of J12 in Table 5 “TWR‐K60D100M Jumper Table” for more information. 
 
TWRK60D100MUM  TWR‐K60N512 Tower Module User's Manual 
 
• GPIO with pin interrupt support, DMA request capability, digital glitch filtering 
• Capacitive touch sensing inputs (TSI) 
• Debug interfaces: JTAG, cJTAG, SWD 
• Trace: TPIU, FPB, DWT, ITM, ETM, ETB  
Page 8 of 18 

Related parts for TWR-K60D100M